subatomic

简明释义

[ˌsʌbəˈtɒmɪk][ˌsʌbəˈtɑːmɪk]

adj. [化学] 亚原子的;原子内的

英英释义

Relating to or denoting particles that are smaller than atoms, such as protons, neutrons, and electrons.

与原子更小的粒子有关或表示,如质子、中子和电子。

单词用法

subatomic particle

亚原子粒子;亚原子微粒;次原子粒子

同义词

subnuclear

亚核的

Subnuclear particles are studied in high-energy physics.

亚核粒子在高能物理学中被研究。

particle

粒子

Understanding particle interactions is crucial for modern physics.

理解粒子间的相互作用对现代物理学至关重要。

atomic-scale

原子尺度的

Research at atomic-scale levels reveals fundamental properties of matter.

在原子尺度的研究揭示了物质的基本特性。

反义词

macroscopic

宏观的

The macroscopic properties of materials can often be explained by their subatomic structure.

材料的宏观特性通常可以通过其亚原子结构来解释。

atomic

原子的

Atomic theory is fundamental to understanding chemical reactions at the macroscopic level.

原子理论对于理解宏观层面的化学反应是基础性的。

例句

1.One of the fundamental building blocks of matter, called quarks, are bound together by gluons to form 'composite' subatomic particles such as protons and neutrons.

夸克是这种物质的最基本构造块之一,它被胶子束缚在一起形成亚原子粒子“混合物”,如质子和中子。

2.Decaying subatomic particles are slightly more likely to generate matter than antimatter.

衰减的亚原子似乎更乐意形成物质粒子而不是反物质粒子。

3.Until now, quantum physical behaviors were observed at atomic and subatomic scales, or in medium-sized molecules.

到目前为止,观察到的量子物理行为仅限于原子和亚原子尺度,或大中型分子。

4.But a powerful beam of subatomic particles could be used to crush nuclei together strongly enough so they fuse.

而强大的亚原子粒子束可以用来粉碎原子核,其强烈程度足以使它们融合。

5.Simon van der Meer, tamer of subatomic particles, died on March 4th, aged 85.

亚原子粒子的降服者西蒙·范德·梅尔于3月4日逝世,享年85岁。

6.Three months ago, however, a team of physicists reported subatomic evidence.

三个月前,一组科学家报告了一份亚原子的证据。

7."It connects from the subatomic world to a whole bird flying," said Michael Edidin, an editor of Biphysical Journal, which published the study last week.

“它让宏观世界的鸟类飞行过程与亚原子世界相连”,上周刚刚发表这项研究的《生物物理学》期刊编辑迈克尔·艾迪丁表示。

8.It could turn up some exciting new physics, too: mini black holes, large extra dimensions, and a host of exotic subatomic particles, just to name a few.

通过LHC也能发现一些让人兴奋的物理学新现象:小型黑洞;大型额外维度;大量奇异的亚原子粒子,只有部分被命名了。

9.Researchers are exploring the properties of subatomic 亚原子 particles to develop new technologies.

研究人员正在探索亚原子粒子的特性,以开发新技术。

10.The Large Hadron Collider is designed to collide particles at subatomic 亚原子 levels, allowing for groundbreaking discoveries.

大型强子对撞机旨在以亚原子水平碰撞粒子,从而允许重大发现。

11.The concept of subatomic 亚原子 particles was pivotal in the development of modern physics.

亚原子粒子的概念在现代物理学的发展中至关重要。

12.Scientists study subatomic 亚原子 particles to understand the fundamental building blocks of matter.

科学家研究亚原子粒子,以理解物质的基本构成。

13.Quantum mechanics deals with the behavior of subatomic 亚原子 particles and their interactions.

量子力学处理亚原子粒子的行为及其相互作用。

作文

The universe is a vast and intricate tapestry of matter and energy, with each thread woven together to create the reality we experience. At the heart of this tapestry lies the concept of the subatomic 亚原子 world, where particles smaller than atoms interact in ways that shape the very fabric of existence. Understanding subatomic 亚原子 particles is crucial for grasping the fundamentals of physics and chemistry, as they govern the behavior of all matter around us.In the realm of subatomic 亚原子 physics, we encounter a variety of particles, including protons, neutrons, and electrons. These particles combine in various ways to form atoms, which are the building blocks of matter. However, subatomic 亚原子 particles themselves can be further divided into even smaller entities known as quarks and leptons. Quarks are the fundamental constituents of protons and neutrons, while leptons include electrons and neutrinos. This hierarchy of particles reveals a complex structure underlying the simple matter we see in our everyday lives.One of the most fascinating aspects of the subatomic 亚原子 world is the principle of quantum mechanics, which describes how these tiny particles behave. Unlike macroscopic objects that follow classical physics, subatomic 亚原子 particles exhibit strange behaviors, such as being in multiple states at once or instantaneously affecting one another over vast distances—a phenomenon known as entanglement. This peculiar nature challenges our understanding of reality and forces us to reconsider what we know about the universe.The study of subatomic 亚原子 particles has led to numerous technological advancements. For instance, the development of semiconductors and transistors, which are essential components of modern electronics, relies heavily on our understanding of subatomic 亚原子 interactions. Additionally, medical imaging techniques like PET scans utilize the principles of subatomic 亚原子 physics to provide critical insights into human health.Moreover, the exploration of subatomic 亚原子 particles has opened up new frontiers in the field of cosmology. By studying cosmic rays and the remnants of the Big Bang, scientists are piecing together the history of the universe and its evolution. The discovery of the Higgs boson, a subatomic 亚原子 particle responsible for giving mass to other particles, was a monumental achievement that confirmed many predictions of the Standard Model of particle physics.However, despite the progress made in understanding the subatomic 亚原子 world, many questions remain unanswered. Dark matter and dark energy, which make up a significant portion of the universe, elude direct detection and challenge our current theories. Researchers continue to investigate these mysterious components, hoping to uncover their subatomic 亚原子 nature and how they influence the cosmos.In conclusion, the subatomic 亚原子 world is a realm filled with wonder and complexity. It holds the keys to understanding the universe's fundamental workings and provides insights that drive technological innovation and scientific discovery. As we delve deeper into this subatomic 亚原子 landscape, we not only expand our knowledge of the physical world but also challenge our perceptions of reality itself. The journey into the subatomic 亚原子 realm is ongoing, and it promises to reveal even more astonishing truths about the nature of existence.

宇宙是一个浩大而复杂的物质和能量的挂毯,每一根线都编织在一起,创造出我们所经历的现实。在这个挂毯的核心是亚原子的概念,在这个世界中,比原子更小的粒子以各种方式相互作用,塑造了存在的基本结构。理解亚原子粒子对于掌握物理学和化学的基础至关重要,因为它们支配着我们周围所有物质的行为。在亚原子物理学的领域中,我们遇到了多种粒子,包括质子、中子和电子。这些粒子以不同的方式结合形成原子,而原子是物质的基本构件。然而,亚原子粒子本身可以进一步分为更小的实体,称为夸克和轻子。夸克是质子和中子的基本成分,而轻子包括电子和中微子。这种粒子的层次结构揭示了简单物质背后复杂的结构。亚原子世界中最迷人的方面之一是量子力学原理,它描述了这些微小粒子的行为。与遵循经典物理学的宏观物体不同,亚原子粒子表现出奇怪的行为,例如同时处于多个状态或瞬时影响彼此,这种现象被称为纠缠。这种奇特的性质挑战了我们对现实的理解,并迫使我们重新考虑我们对宇宙的认识。对亚原子粒子的研究已经带来了许多技术进步。例如,现代电子设备必不可少的半导体和晶体管的开发在很大程度上依赖于我们对亚原子相互作用的理解。此外,医学成像技术如正电子发射断层扫描(PET)利用亚原子物理学的原理提供对人类健康的重要见解。此外,对亚原子粒子的探索为宇宙学领域开辟了新的前沿。通过研究宇宙射线和大爆炸的遗迹,科学家们正在拼凑宇宙的历史及其演变。希格斯玻色子的发现——一种负责赋予其他粒子质量的亚原子粒子,是一项重大成就,证实了粒子物理标准模型的许多预测。然而,尽管我们在理解亚原子世界方面取得了进展,但许多问题仍未得到解答。暗物质和暗能量占据了宇宙的很大一部分,逃避直接探测并挑战我们当前的理论。研究人员继续调查这些神秘成分,希望揭示它们的亚原子本质及其对宇宙的影响。总之,亚原子世界是一个充满奇迹和复杂性的领域。它掌握着理解宇宙基本运作的钥匙,并提供推动技术创新和科学发现的洞察。随着我们深入探索这个亚原子的景观,我们不仅扩大了对物理世界的知识,还挑战了我们对现实的看法。进入亚原子领域的旅程仍在继续,它承诺揭示更多关于存在本质的惊人真理。