birefringence
简明释义
英[ˌbaɪrɪˈfrɪndʒəns]美[ˌbaɪrɪˈfrɪndʒəns]
n. [光] 双折射
英英释义
单词用法
光学双折射 | |
双折射效应 | |
负双折射 | |
正双折射 | |
晶体中的双折射 | |
双折射测量技术 | |
材料的双折射 |
同义词
反义词
例句
1.In some cases, the color fringes can be used to evaluate birefringence, since each color band correlates to the degree of stress in the inspected sample.
在某些情况下,彩色条纹,可以用来评估双折射的,因为每种颜色波段关联度应力在检查的样本。
2.Even a small level of birefringence hampers optical properties and product performance.
即使是一个小级别的双折射阻碍了光学性能和产品性能。
3.In this paper, we study theoretically infinitesimal element method for calculation of stress birefringence in polarization maintaining fibers.
本文研究了计算保偏光纤中应力双折射特性的微元算法,对其计算值进行了理论验证。
4.Senarmont's method is one of most commonly used methods in measuring fibre birefringence.
纤维双折射的测量有许多方法,但萨那蒙法是最常用方法之一。
5.The result of the research for MPOF shows it has a high birefringence.
这种微结构塑料光纤的研究结果显示它具有高双折射特性。
6.For the study of birefringence dispersion character of other aeolotropic crystal material, this method can also be applied.
此方法对其它各向异性晶体材料的双折射率色散特性的研究同样适应。
7.The phenomenon of birefringence is commonly observed in certain crystals, causing them to split light into two rays.
某些晶体中常见的现象是双折射,导致它们将光分成两束。
8.Certain optical devices utilize birefringence to enhance image contrast.
某些光学设备利用双折射来增强图像对比度。
9.In optical microscopy, birefringence can be used to identify different minerals in rock samples.
在光学显微镜中,双折射可以用来识别岩石样本中的不同矿物。
10.The birefringence of a material can provide information about its internal stress and structural integrity.
材料的双折射可以提供有关其内部应力和结构完整性的信息。
11.Engineers often measure birefringence in polymers to assess their mechanical properties.
工程师通常测量聚合物中的双折射以评估其机械性能。
作文
Birefringence is a fascinating optical phenomenon that occurs in certain materials, leading to the splitting of a beam of light into two rays as it passes through. This unique property can be observed in various crystals, such as calcite and quartz, as well as in some man-made materials like liquid crystals. Understanding birefringence (双折射) is essential for numerous applications in science and technology, particularly in fields such as optics, geology, and materials science.The concept of birefringence (双折射) arises from the anisotropic nature of certain substances. In simpler terms, this means that the material has different physical properties in different directions. When light enters a birefringent material, it interacts with the atomic structure of the substance, causing it to travel at different speeds depending on its polarization direction. Consequently, the light is split into two distinct rays, each refracted at a different angle.One of the most common examples of birefringence (双折射) can be seen in the mineral calcite. When a beam of light passes through a piece of calcite, it creates a double image of any object viewed through it. This effect can be both intriguing and useful, as it allows scientists and researchers to analyze the material's properties and identify its composition. The ability to observe birefringence (双折射) is not limited to natural crystals; synthetic materials, such as those used in LCD screens, also exhibit this property. Liquid crystals are particularly interesting because they can change their birefringence (双折射) in response to external stimuli, such as electric fields or temperature variations.In the field of optics, birefringence (双折射) plays a crucial role in the design and functionality of various devices. Polarizers, which are used in cameras and sunglasses, rely on the principles of birefringence (双折射) to filter light waves and reduce glare. Additionally, optical instruments such as microscopes and interferometers utilize birefringence (双折射) to enhance image contrast and resolution, enabling researchers to study materials at a microscopic level.In geology, the study of birefringence (双折射) helps geologists identify minerals and understand their properties. By analyzing the birefringence (双折射) patterns of thin sections of rocks under polarized light, geologists can determine the mineral composition and texture of the samples. This information is invaluable for understanding geological processes and the history of the Earth.In conclusion, birefringence (双折射) is a remarkable phenomenon that has significant implications across various scientific disciplines. From enhancing optical devices to aiding in mineral identification, the study of birefringence (双折射) continues to provide insights that advance our understanding of the natural world. As technology evolves, the applications of birefringence (双折射) are likely to expand further, opening new avenues for research and innovation.
双折射是一个迷人的光学现象,它发生在某些材料中,导致光束在通过时分成两条光线。这种独特的属性可以在各种晶体中观察到,例如方解石和石英,以及一些人造材料如液晶。理解双折射(birefringence)对于科学和技术中的众多应用至关重要,特别是在光学、地质学和材料科学等领域。双折射(birefringence)的概念源于某些物质的各向异性。简单来说,这意味着材料在不同方向上具有不同的物理属性。当光进入一个双折射材料时,它与物质的原子结构相互作用,导致光根据其偏振方向以不同的速度传播。因此,光被分成两条不同的光线,每条光线以不同的角度折射。最常见的双折射(birefringence)例子可以在矿物方解石中看到。当一束光穿过一块方解石时,它会在透过它的任何物体上创建一个双重图像。这种效果既令人着迷又有用,因为它允许科学家和研究人员分析材料的性质并识别其成分。观察双折射(birefringence)的能力不仅限于天然晶体;合成材料,如用于液晶显示屏的材料,也表现出这一特性。液晶尤其有趣,因为它们可以根据外部刺激(例如电场或温度变化)改变其双折射(birefringence)。在光学领域,双折射(birefringence)在各种设备的设计和功能中发挥着关键作用。偏振器在相机和太阳镜中使用,依赖于双折射(birefringence)的原理来过滤光波并减少眩光。此外,显微镜和干涉仪等光学仪器利用双折射(birefringence)来增强图像对比度和分辨率,使研究人员能够在微观层面上研究材料。在地质学中,双折射(birefringence)的研究帮助地质学家识别矿物并了解其特性。通过分析薄片岩石在偏振光下的双折射(birefringence)模式,地质学家可以确定样品的矿物成分和纹理。这些信息对于理解地质过程和地球的历史是无价的。总之,双折射(birefringence)是一个显著的现象,在各个科学学科中具有重要意义。从增强光学设备到帮助矿物识别,双折射(birefringence)的研究继续提供洞察,推动我们对自然世界的理解。随着技术的发展,双折射(birefringence)的应用可能会进一步扩展,为研究和创新开辟新的途径。