section modulus
简明释义
截面模量
英英释义
例句
1.A larger section modulus indicates a stronger structural member.
更大的截面模量表明结构构件更强。
2.To prevent failure, the section modulus of the column must exceed the required value.
为了防止失效,柱子的截面模量必须超过所需值。
3.The engineer calculated the section modulus to ensure the beam could support the load without bending.
工程师计算了截面模量以确保梁可以在不弯曲的情况下支撑负载。
4.When designing a bridge, the section modulus is critical for safety and stability.
在设计桥梁时,截面模量对于安全和稳定性至关重要。
5.The architect specified a steel beam with a high section modulus for the roof structure.
建筑师为屋顶结构指定了一根具有高截面模量的钢梁。
作文
The concept of section modulus is fundamental in the field of structural engineering and mechanics. It is a geometric property that helps engineers determine the strength and rigidity of a structural member. The section modulus is defined as the ratio of the second moment of area (also known as the area moment of inertia) to the distance from the neutral axis to the outermost fiber of the section. This property is crucial when designing beams, columns, and other load-bearing structures, as it directly influences their ability to withstand bending and torsional forces.Understanding section modulus allows engineers to optimize the design of structural components, ensuring safety and efficiency. For instance, when selecting materials for construction, the section modulus helps determine how much load a beam can support without failing. A higher section modulus indicates a stronger section, which means it can carry more load with less deflection. This is particularly important in applications such as bridges, buildings, and towers, where structural integrity is paramount.In practical terms, calculating the section modulus involves measuring the dimensions of the cross-section of the structural element. Different shapes have different formulas for calculating their section modulus. For example, for a rectangular section, the formula is given by:\[ Z = \frac{b h^2}{6} \]\where \( b \) is the width and \( h \) is the height of the rectangle. For circular sections, the formula changes accordingly. This variation in calculation highlights the importance of understanding the specific geometry of the material being used.Moreover, the section modulus is not only critical for new designs but also plays a significant role in the assessment of existing structures. Engineers often evaluate the section modulus of aging infrastructure to ensure that they still meet safety standards. If a structure is found to have a lower than required section modulus, it may need reinforcement or even replacement to prevent catastrophic failures.In conclusion, the section modulus is a vital concept in structural engineering that aids in the design, analysis, and maintenance of load-bearing structures. By understanding and applying this property effectively, engineers can create safer, more efficient designs that stand the test of time. As the industry evolves and new materials and techniques are developed, the significance of the section modulus will continue to grow, making it an essential topic of study for future engineers.
“截面模量”是结构工程和力学领域的基本概念。它是一种几何特性,帮助工程师确定结构构件的强度和刚度。“截面模量”定义为面积惯性矩(也称为面积二次矩)与中性轴到截面最外层纤维的距离之比。这个特性在设计梁、柱和其他承重结构时至关重要,因为它直接影响到它们抵抗弯曲和扭转力的能力。理解“截面模量”使工程师能够优化结构组件的设计,确保安全和效率。例如,在选择建筑材料时,“截面模量”帮助确定梁在不失效的情况下可以支持多少载荷。更高的“截面模量”表示更强的截面,这意味着它可以以更小的挠度承载更多的载荷。这在桥梁、建筑物和塔楼等应用中尤其重要,因为结构的完整性至关重要。在实际操作中,计算“截面模量”涉及测量结构元素的横截面尺寸。不同的形状具有不同的“截面模量”计算公式。例如,对于矩形截面,公式为:\[ Z = \frac{b h^2}{6} \]\其中 \( b \) 是宽度,\( h \) 是矩形的高度。对于圆形截面,公式相应变化。这种计算的变化突显了了解所使用材料特定几何形状的重要性。此外,“截面模量”不仅对新设计至关重要,而且在评估现有结构时也发挥着重要作用。工程师经常评估老化基础设施的“截面模量”,以确保它们仍然符合安全标准。如果发现某一结构的“截面模量”低于要求,可能需要加固甚至更换,以防止灾难性故障。总之,“截面模量”是结构工程中一个至关重要的概念,有助于承重结构的设计、分析和维护。通过有效地理解和应用这一特性,工程师可以创造出更加安全、高效的设计,经受住时间的考验。随着行业的发展和新材料及技术的出现,“截面模量”的重要性将继续增长,使其成为未来工程师学习的核心主题。
相关单词