puromycin
简明释义
英[ˌpjʊərəʊˈmaɪsɪn]美[ˌpjʊrəˈmaɪsɪn]
n. [药] 嘌呤霉素(抗生素的一种)
英英释义
单词用法
puromycin抗性 | |
puromycin筛选 | |
用puromycin处理 | |
对puromycin敏感 |
同义词
抗生素 | Puromycin是一种用于分子生物学的抗生素。 | ||
抑制剂 | 作为一种抑制剂,puromycin可以阻止蛋白质合成。 |
反义词
启动子 | 启动子对于启动转录是必不可少的。 | ||
激活剂 | 激活剂可以增强某些基因的表达。 |
例句
1.Puromycin aminonucleoside-induced nephrosis is a well-described model of human idiopathic nephrotic syndrome, suppressing expression of integrin expression in cultured glomerular epithelial cells.
氨基核苷嘌呤霉素诱导肾病变是人原发性肾病综合症的模型,抑制培养的肾小球上皮细胞整联蛋白的表达。
2.Puromycin aminonucleoside-induced nephrosis is a well-described model of human idiopathic nephrotic syndrome, suppressing expression of integrin expression in cultured glomerular epithelial cells.
氨基核苷嘌呤霉素诱导肾病变是人原发性肾病综合症的模型,抑制培养的肾小球上皮细胞整联蛋白的表达。
3.Puromycin is used in cell biology to select mammalian cell lines that have been transformed by vectors that express puromycin-N-acetyl-transferase.
在细胞生物学中用嘌罗霉素来选择用载体转化能表达嘌呤霉素- N -乙酰基转移酶类的哺乳动物细胞系。
4.Puromycin aminonucleoside is the key intermediate in the synthesis of semi-synthetic analogues of puromycin.
氨基核苷嘌呤霉素是合成嘌呤毒素的半合成类似物中关键性的中间体。
5.While the salt shares the same pharmacological properties as puromycin free base, its greater water solubility may offer advantages in some in vitro applications.
该盐同嘌呤霉素游离碱具有相同的药理学性质,它的高度的水溶性能给体外研究应用提供一些优势。
6.The addition of puromycin allowed for the identification of resistant strains.
添加puromycin使得能够识别耐药菌株。
7.In the experiment, puromycin was employed to inhibit protein synthesis.
在实验中,使用了puromycin来抑制蛋白质合成。
8.The researchers used puromycin to select for successfully transfected cells.
研究人员使用puromycin来筛选成功转染的细胞。
9.Using puromycin in the selection process improves the efficiency of gene editing.
在选择过程中使用puromycin提高了基因编辑的效率。
10.Cells treated with puromycin showed a significant decrease in growth rate.
处理过puromycin的细胞生长速率明显下降。
作文
Puromycin is a powerful antibiotic that has been widely studied for its effects on protein synthesis. It was first discovered in the 1950s and has since become an essential tool in molecular biology and biochemistry research. The mechanism of action of puromycin (普霉素) involves its ability to mimic an aminoacyl-tRNA, which allows it to enter the ribosomal A-site during translation. Once incorporated into the growing polypeptide chain, puromycin (普霉素) causes premature termination of protein synthesis, leading to the production of incomplete and nonfunctional proteins. This unique property makes puromycin (普霉素) invaluable for researchers studying gene expression and protein function.In laboratory settings, puromycin (普霉素) is often used to select for cells that have successfully integrated a plasmid containing a puromycin (普霉素) resistance gene. By applying puromycin (普霉素) to the culture medium, only those cells that express the resistance gene will survive, allowing scientists to isolate and study genetically modified organisms. This method has revolutionized the field of genetic engineering, enabling the development of various biotechnological applications, including the production of therapeutic proteins and the creation of animal models for disease research.Moreover, puromycin (普霉素) has been instrumental in advancing our understanding of cellular processes. For instance, researchers have utilized puromycin (普霉素) to investigate the dynamics of protein synthesis in different cell types and under various conditions. By measuring the rate of protein synthesis before and after treatment with puromycin (普霉素), scientists can gain insights into how cells respond to stress, growth factors, and other stimuli.Despite its utility, the use of puromycin (普霉素) is not without challenges. Its potent effects can sometimes lead to unintended consequences in experimental settings. For example, while puromycin (普霉素) effectively eliminates unwanted cells, it may also affect the viability of target cells if not used carefully. Therefore, researchers must optimize the concentration and duration of puromycin (普霉素) treatment to minimize toxicity while achieving their desired outcomes.In conclusion, puromycin (普霉素) is a crucial agent in the toolbox of molecular biologists and biochemists. Its ability to inhibit protein synthesis has paved the way for significant advancements in genetic research and biotechnology. As we continue to explore the complexities of cellular mechanisms and develop novel therapeutic strategies, the significance of puromycin (普霉素) will undoubtedly remain at the forefront of scientific inquiry. Understanding the implications of puromycin (普霉素) on protein synthesis not only enhances our knowledge of cellular biology but also opens doors to innovative approaches in medicine and biotechnology.
普霉素是一种强效抗生素,广泛研究其对蛋白质合成的影响。它首次发现于20世纪50年代,至今已成为分子生物学和生物化学研究的重要工具。puromycin(普霉素)的作用机制涉及其模仿氨酰-tRNA的能力,使其能够在翻译过程中进入核糖体的A位点。一旦被纳入正在增长的多肽链中,puromycin(普霉素)会导致蛋白质合成的过早终止,从而产生不完整且无功能的蛋白质。这一独特特性使得puromycin(普霉素)在研究基因表达和蛋白质功能方面极为宝贵。在实验室环境中,puromycin(普霉素)常用于选择成功整合了含有puromycin(普霉素)抗性基因的质粒的细胞。通过将puromycin(普霉素)应用于培养基,只有那些表达抗性基因的细胞才能存活,从而使科学家能够分离和研究基因修饰的生物体。这种方法彻底改变了基因工程领域,使各种生物技术应用的发展成为可能,包括治疗性蛋白质的生产和疾病研究动物模型的创建。此外,puromycin(普霉素)在推动我们对细胞过程理解方面也发挥了重要作用。例如,研究人员利用puromycin(普霉素)研究不同细胞类型和各种条件下的蛋白质合成动态。通过测量在处理puromycin(普霉素)前后蛋白质合成的速率,科学家可以深入了解细胞如何响应压力、生长因子和其他刺激。尽管其用途广泛,puromycin(普霉素)的使用并非没有挑战。其强效作用有时会在实验设置中导致意想不到的后果。例如,虽然puromycin(普霉素)有效消除不必要的细胞,但如果使用不当,也可能影响目标细胞的生存。因此,研究人员必须优化puromycin(普霉素)处理的浓度和持续时间,以最小化毒性,同时实现所需结果。总之,puromycin(普霉素)是分子生物学家和生物化学家工具箱中的关键试剂。其抑制蛋白质合成的能力为基因研究和生物技术的重大进展铺平了道路。随着我们继续探索细胞机制的复杂性并开发新颖的治疗策略,puromycin(普霉素)的重要性无疑将继续处于科学研究的前沿。理解puromycin(普霉素)对蛋白质合成的影响不仅增强了我们对细胞生物学的认识,还为医学和生物技术中的创新方法开辟了新的途径。