orthotropic plate

简明释义

正交蛤异性板

英英释义

An orthotropic plate is a flat structural element characterized by different material properties in three mutually perpendicular directions, typically exhibiting distinct stiffness and strength characteristics along its length, width, and thickness.

正交各向异性板是一种平面结构元件,其在三个相互垂直的方向上具有不同的材料特性,通常在长度、宽度和厚度方向上表现出不同的刚度和强度特性。

例句

1.The research focused on the vibration characteristics of an orthotropic plate 正交各向异性板 under various boundary conditions.

研究集中在不同边界条件下<自身>正交各向异性板<自身>的振动特性。

2.The design of the bridge required an analysis of the load distribution on the orthotropic plate 正交各向异性板 to ensure safety.

桥梁的设计需要分析对<自身>正交各向异性板<自身>的荷载分布,以确保安全。

3.In aerospace engineering, an orthotropic plate 正交各向异性板 is often used for lightweight structural components.

在航空航天工程中,<自身>正交各向异性板<自身>常用于轻质结构组件。

4.Finite element analysis was employed to study the stress distribution in the orthotropic plate 正交各向异性板 used in the aircraft wings.

有限元分析被用来研究飞机机翼中<自身>正交各向异性板<自身>的应力分布。

5.Engineers must consider the thermal expansion properties of the orthotropic plate 正交各向异性板 when designing the composite material.

工程师在设计复合材料时必须考虑<自身>正交各向异性板<自身>的热膨胀特性。

作文

The study of materials and their properties has always been a crucial aspect of engineering and design. One particularly interesting type of material is the orthotropic plate, which exhibits different mechanical properties in three mutually perpendicular directions. This unique characteristic makes orthotropic plates highly valuable in various applications, especially in aerospace, civil engineering, and structural design.To understand the significance of orthotropic plates, we must first explore the concept of orthotropy. Unlike isotropic materials that have uniform properties in all directions, orthotropic materials possess distinct mechanical properties along three axes: the longitudinal, transverse, and thickness directions. This means that the stiffness, strength, and other mechanical attributes can vary based on the direction of the applied load. For instance, in a wooden beam, the grain direction significantly influences its strength and elasticity, thereby making it an orthotropic plate.One of the primary advantages of using orthotropic plates in engineering is their ability to optimize weight and strength. In aerospace applications, for example, engineers often seek materials that are lightweight yet strong enough to withstand the forces encountered during flight. By utilizing orthotropic plates, they can reduce the overall weight of the aircraft while maintaining structural integrity, leading to improved fuel efficiency and performance.Moreover, orthotropic plates are also essential in civil engineering, particularly in the design of bridges and buildings. Structural engineers can use these materials to create components that can better resist bending and shear forces, resulting in safer and more durable structures. The ability to tailor the properties of orthotropic plates according to specific design requirements allows for innovative solutions that traditional materials may not provide.In addition to their practical applications, the study of orthotropic plates also presents several challenges. For instance, accurately predicting the behavior of orthotropic plates under various loading conditions requires advanced mathematical modeling and simulations. Engineers must consider factors such as temperature changes, moisture absorption, and fatigue over time, which can all affect the performance of these materials. As research continues to advance, new methods and technologies are being developed to better understand and utilize orthotropic plates in various fields.In conclusion, the orthotropic plate is a fascinating subject within the realm of materials science and engineering. Its unique properties enable a wide range of applications, from aerospace to civil engineering, where optimizing strength and weight is paramount. As we continue to explore and innovate with orthotropic plates, we unlock new possibilities for creating efficient and effective designs that can withstand the complexities of the modern world. Understanding the behavior and potential of orthotropic plates will undoubtedly play a significant role in shaping the future of engineering and material science.

材料及其性质的研究一直是工程和设计的重要方面。一个特别有趣的材料类型是正交各向异性板,它在三个互相垂直的方向上表现出不同的机械性质。这种独特的特性使得正交各向异性板在各种应用中具有很高的价值,尤其是在航空航天、土木工程和结构设计领域。要理解正交各向异性板的重要性,我们首先必须探讨正交各向异性的概念。与在所有方向上具有均匀性质的各向同性材料不同,正交各向异性材料在三个轴向上具有不同的机械性质:纵向、横向和厚度方向。这意味着刚度、强度和其他机械属性可能会根据施加负载的方向而变化。例如,在一根木梁中,纹理方向显著影响其强度和弹性,从而使其成为一种正交各向异性板。使用正交各向异性板在工程中的主要优点之一是它们能够优化重量和强度。在航空航天应用中,工程师通常寻求轻便但足够坚固以承受飞行过程中遇到的力量的材料。通过利用正交各向异性板,他们可以在保持结构完整性的同时减少飞机的整体重量,从而提高燃油效率和性能。此外,正交各向异性板在土木工程中也至关重要,特别是在桥梁和建筑物的设计中。结构工程师可以使用这些材料来制造更能抵抗弯曲和剪切力的部件,从而使结构更加安全和耐用。根据特定设计要求量身定制正交各向异性板的性质,使得传统材料可能无法提供的创新解决方案成为可能。除了实际应用,正交各向异性板的研究也带来了若干挑战。例如,准确预测正交各向异性板在各种加载条件下的行为需要先进的数学建模和仿真。工程师必须考虑温度变化、湿气吸收和疲劳等因素,这些都可能影响这些材料的性能。随着研究的不断进展,新的方法和技术正在不断发展,以更好地理解和利用正交各向异性板在各个领域中的应用。总之,正交各向异性板是材料科学和工程领域一个引人入胜的主题。其独特的性质使其在从航空航天到土木工程的广泛应用中具有重要意义,在这些应用中,优化强度和重量至关重要。随着我们继续探索和创新正交各向异性板,我们为创造能够承受现代世界复杂性的高效有效的设计解锁了新的可能性。理解正交各向异性板的行为和潜力无疑将在塑造工程和材料科学的未来中发挥重要作用。

相关单词

orthotropic

orthotropic详解:怎么读、什么意思、用法