central moment of inertia
简明释义
中心惯性矩
英英释义
例句
1.When designing a bridge, engineers must consider the central moment of inertia 中心惯性矩 of the materials used.
在设计桥梁时,工程师必须考虑所用材料的中心惯性矩 中心惯性矩。
2.In structural analysis, understanding the central moment of inertia 中心惯性矩 is crucial for determining how a structure will respond to bending forces.
在结构分析中,理解中心惯性矩 中心惯性矩对于确定结构如何响应弯曲力至关重要。
3.The engineer calculated the central moment of inertia 中心惯性矩 for the beam to ensure it could support the load.
工程师计算了该梁的中心惯性矩 中心惯性矩以确保其能够支撑负载。
4.A higher central moment of inertia 中心惯性矩 indicates that an object is more resistant to rotational acceleration.
更高的中心惯性矩 中心惯性矩表明一个物体对旋转加速度的抵抗力更强。
5.The central moment of inertia 中心惯性矩 of a circular cross-section is used to calculate its resistance to torsion.
圆形截面的中心惯性矩 中心惯性矩用于计算其抵抗扭转的能力。
作文
The concept of central moment of inertia is fundamental in the field of physics and engineering, particularly when analyzing the rotational dynamics of objects. To understand this concept, we must first delve into the basic principles of inertia and how it relates to motion. Inertia is the property of an object that resists changes in its state of motion. When we talk about the central moment of inertia or 质心惯性矩, we are specifically referring to the measure of an object's resistance to rotational acceleration about a specific axis, typically through its center of mass.In practical applications, the central moment of inertia plays a crucial role in determining how an object will behave when subjected to various forces. For instance, consider a spinning top. The way it spins and maintains its balance can be attributed to its central moment of inertia relative to its pivot point. A higher moment of inertia means that the object is more stable when rotating, making it less susceptible to tipping over.Calculating the central moment of inertia involves integrating the distribution of mass in relation to the axis of rotation. For simple geometric shapes, there are standard formulas available. For example, the moment of inertia for a solid cylinder rotating about its central axis can be calculated using the formula I = (1/2) m r², where I is the moment of inertia, m is the mass, and r is the radius. This mathematical representation allows engineers and physicists to predict how objects will behave under rotational forces.Moreover, understanding the central moment of inertia is essential in various fields such as mechanical engineering, robotics, and even sports science. Engineers must consider the moment of inertia when designing machinery and vehicles, ensuring they operate efficiently and safely. In robotics, the central moment of inertia informs the design of robotic arms and joints, allowing for precise movements and stability.In the realm of sports, athletes can benefit from understanding their own central moment of inertia. For example, a gymnast performing on a balance beam must be aware of their body’s moment of inertia to maintain balance and execute complex maneuvers effectively. By adjusting their posture, they can manipulate their central moment of inertia to enhance performance.As we continue to explore the intricacies of motion and stability, the central moment of inertia remains a critical factor in both theoretical studies and practical applications. The implications of this concept extend far beyond simple calculations; it influences the design of everyday objects and complex machines alike. In conclusion, the central moment of inertia is not just a mere number but a vital parameter that helps us understand the dynamics of rotation and the physical world around us.
“质心惯性矩”是物理学和工程学领域中的一个基本概念,尤其是在分析物体的旋转动力学时。要理解这个概念,我们首先需要深入研究惯性及其与运动的关系。惯性是物体抵抗其运动状态变化的属性。当我们谈论“质心惯性矩”时,我们特别指的是物体关于特定轴(通常是其质心)旋转加速的阻力的量度。在实际应用中,“质心惯性矩”在确定物体在各种力作用下的行为方面起着至关重要的作用。例如,考虑一个旋转的陀螺。它旋转和保持平衡的方式可以归因于其相对于支点的“质心惯性矩”。较高的惯性矩意味着物体在旋转时更稳定,使其不易倾倒。计算“质心惯性矩”涉及到对质量分布与旋转轴的关系进行积分。对于简单的几何形状,有标准公式可供使用。例如,绕其中心轴旋转的实心圆柱的惯性矩可以使用公式 I = (1/2) m r² 计算,其中 I 是惯性矩,m 是质量,r 是半径。这种数学表示允许工程师和物理学家预测物体在旋转力下的行为。此外,理解“质心惯性矩”在机械工程、机器人技术甚至体育科学等各个领域都是必不可少的。工程师在设计机械和车辆时必须考虑惯性矩,以确保它们高效且安全地运行。在机器人技术中,“质心惯性矩”为机器臂和关节的设计提供了信息,从而实现精确的运动和稳定性。在体育领域,运动员可以通过了解自己的“质心惯性矩”来受益。例如,在平衡木上表演的体操运动员必须意识到自己身体的惯性矩,以有效维持平衡并执行复杂的动作。通过调整姿势,他们可以操控自己的“质心惯性矩”,以提高表现。随着我们继续探索运动和稳定性的复杂性,“质心惯性矩”仍然是理论研究和实际应用中的关键因素。这个概念的影响远远超出了简单的计算;它影响着日常物体和复杂机器的设计。总之,“质心惯性矩”不仅仅是一个数字,而是一个重要的参数,帮助我们理解旋转的动态以及我们周围的物理世界。
相关单词