ray trajectory

简明释义

射线路径

英英释义

The path or course that a ray of light, sound, or other wave follows as it travels through space or a medium.

光线、声音或其他波在穿过空间或介质时所遵循的路径或轨迹。

例句

1.In physics, understanding the ray trajectory 光线轨迹 helps us predict how light behaves when it passes through different mediums.

在物理学中,理解光线轨迹有助于我们预测光在不同介质中传播时的行为。

2.The ray trajectory 光线轨迹 can be altered by changing the angle of incidence on a reflective surface.

通过改变入射角,可以改变光线轨迹在反射表面上的路径。

3.Astronomers study the ray trajectory 光线轨迹 of light from distant stars to understand their composition.

天文学家研究来自遥远星星的光线轨迹以了解它们的组成。

4.In computer graphics, rendering realistic images often involves calculating the ray trajectory 光线轨迹 of light rays.

在计算机图形学中,渲染逼真的图像通常涉及计算光线的光线轨迹

5.The simulation software accurately models the ray trajectory 光线轨迹 of lasers in various environments.

该模拟软件准确地模拟了激光在各种环境中的光线轨迹

作文

In the study of physics, particularly in optics, the concept of ray trajectory (光线轨迹) plays a crucial role in understanding how light behaves as it travels through different mediums. The ray trajectory (光线轨迹) describes the path that a ray of light follows as it moves from one point to another, influenced by various factors such as refraction, reflection, and absorption. This concept is fundamental not only for theoretical studies but also for practical applications in fields like photography, astronomy, and even in designing optical instruments.When light encounters a boundary between two different materials, its speed changes, leading to a bending effect known as refraction. The ray trajectory (光线轨迹) will alter as a result of this change in speed, which can be predicted using Snell's Law. For instance, when light passes from air into water, it slows down and bends towards the normal line. Understanding this bending of the ray trajectory (光线轨迹) is essential for designing lenses that focus light accurately, whether in cameras or eyeglasses.Reflection is another important phenomenon that affects the ray trajectory (光线轨迹). When light hits a reflective surface, such as a mirror, it bounces back, following the law of reflection, which states that the angle of incidence equals the angle of reflection. This principle is crucial in applications ranging from simple mirrors to complex laser systems. By analyzing the ray trajectory (光线轨迹), engineers and scientists can manipulate light paths to achieve desired outcomes in various technologies.Moreover, the ray trajectory (光线轨迹) is not just limited to simple reflections and refractions. In more complex scenarios, such as when light travels through multiple layers of materials or interacts with obstacles, the trajectory can become intricate. Computational methods, including ray tracing algorithms, are often employed in computer graphics to simulate realistic lighting effects. These algorithms calculate the ray trajectory (光线轨迹) of thousands of rays, allowing for the creation of lifelike images in video games and movies.In astronomy, understanding the ray trajectory (光线轨迹) of light from distant stars and galaxies is essential for interpreting the universe's structure and behavior. Telescopes utilize various optical components to ensure that the ray trajectory (光线轨迹) of incoming light is directed correctly onto detectors, enabling astronomers to gather valuable data about celestial objects.In conclusion, the concept of ray trajectory (光线轨迹) is fundamental in the field of optics, influencing how we understand and manipulate light. From basic principles of reflection and refraction to advanced applications in technology and astronomy, mastering the ray trajectory (光线轨迹) is essential for anyone studying or working in related fields. By grasping the intricacies of how light travels and interacts with materials, we can harness its properties to innovate and explore new frontiers in science and technology.

在物理学的研究中,特别是在光学领域,ray trajectory(光线轨迹)的概念在理解光在不同介质中传播的行为方面起着至关重要的作用。ray trajectory(光线轨迹)描述了一束光从一个点到另一个点的传播路径,这一过程受到折射、反射和吸收等多种因素的影响。这个概念不仅对理论研究至关重要,而且在摄影、天文学甚至光学仪器设计等领域的实际应用中也显得尤为重要。当光遇到两种不同材料之间的边界时,它的速度会发生变化,从而导致一种称为折射的弯曲效应。ray trajectory(光线轨迹)会因这种速度变化而改变,可以使用斯涅尔定律进行预测。例如,当光从空气进入水中时,它减速并向法线方向弯曲。理解这种ray trajectory(光线轨迹)的弯曲对于设计能够准确聚焦光线的透镜至关重要,无论是在相机还是眼镜中。反射是另一个影响ray trajectory(光线轨迹)的重要现象。当光线撞击一个反射表面,如镜子时,它会反弹回来,遵循反射定律,即入射角等于反射角。这个原则在从简单镜子到复杂激光系统的应用中都至关重要。通过分析ray trajectory(光线轨迹),工程师和科学家可以操控光的路径,以实现各种技术中的预期结果。此外,ray trajectory(光线轨迹)不仅限于简单的反射和折射。在更复杂的情况下,例如当光穿过多层材料或与障碍物相互作用时,光的轨迹可能变得错综复杂。计算方法,包括光线追踪算法,常用于计算机图形学中,以模拟逼真的光照效果。这些算法计算成千上万条光线的ray trajectory(光线轨迹),使得在视频游戏和电影中创建栩栩如生的图像成为可能。在天文学中,理解来自遥远恒星和星系的光的ray trajectory(光线轨迹)对于解释宇宙的结构和行为至关重要。望远镜利用各种光学组件,确保进入光的ray trajectory(光线轨迹)正确地指向探测器,使天文学家能够收集有关天体的重要数据。总之,ray trajectory(光线轨迹)这一概念在光学领域是基础性的,它影响着我们对光的理解和操控。从基本的反射和折射原理到技术和天文学中的高级应用,掌握ray trajectory(光线轨迹)对任何研究或从事相关领域的人来说都是必不可少的。通过掌握光的传播和与材料相互作用的复杂性,我们可以利用其特性进行创新,并探索科学和技术的新前沿。

相关单词

trajectory

trajectory详解:怎么读、什么意思、用法