piezoelectric crystal
简明释义
压电晶体
英英释义
A piezoelectric crystal is a type of crystalline material that generates an electric charge in response to applied mechanical stress. | 压电晶体是一种晶体材料,在施加机械应力时会产生电荷。 |
例句
1.A piezoelectric crystal can be used in energy harvesting applications.
压电晶体可以用于能量收集应用。
2.The sensor uses a piezoelectric crystal to detect pressure changes.
传感器使用压电晶体来检测压力变化。
3.The vibration of the piezoelectric crystal generates an electric charge.
压电晶体的振动产生电荷。
4.In medical ultrasound devices, a piezoelectric crystal converts electrical signals into sound waves.
在医疗超声设备中,压电晶体将电信号转换为声波。
5.Many modern watches use a piezoelectric crystal for accurate timekeeping.
许多现代手表使用压电晶体进行精准计时。
作文
The world around us is filled with fascinating phenomena that often go unnoticed. One such phenomenon is the property of certain materials to generate an electric charge in response to mechanical stress. This property is known as piezoelectricity, and it is primarily observed in a special type of material called a piezoelectric crystal (压电晶体). These crystals have unique structures that allow them to convert mechanical energy into electrical energy and vice versa. The discovery of piezoelectric crystals (压电晶体) dates back to the early 19th century when Pierre and Jacques Curie first observed this effect in quartz crystals. Since then, the applications of piezoelectric crystals (压电晶体) have expanded significantly, impacting various fields such as electronics, medicine, and even environmental monitoring. In electronics, piezoelectric crystals (压电晶体) are commonly used in devices like microphones and speakers. When sound waves hit a microphone containing a piezoelectric crystal (压电晶体), the mechanical vibrations cause the crystal to produce an electrical signal, which can then be amplified and recorded. Conversely, in speakers, an electrical signal is sent to the piezoelectric crystal (压电晶体), causing it to vibrate and produce sound waves. This bidirectional conversion of energy showcases the versatility of piezoelectric crystals (压电晶体) in audio technology. Moreover, piezoelectric crystals (压电晶体) play a crucial role in medical imaging technologies, such as ultrasound. In ultrasound machines, piezoelectric crystals (压电晶体) are used to emit sound waves into the body. When these waves encounter different tissues, they bounce back and are detected by the same or another piezoelectric crystal (压电晶体). The returning signals are then converted into images, allowing healthcare professionals to diagnose and monitor various conditions. This application highlights how piezoelectric crystals (压电晶体) contribute to advancements in healthcare and patient safety. In addition to their use in electronics and medicine, piezoelectric crystals (压电晶体) are also employed in sensors and actuators. For instance, they can be found in pressure sensors that detect changes in force or weight. When pressure is applied to a piezoelectric crystal (压电晶体), it generates an electrical signal proportional to the amount of pressure exerted. This capability makes them ideal for various industrial applications, including robotics and automation. Furthermore, the field of renewable energy is beginning to explore the potential of piezoelectric crystals (压电晶体) for energy harvesting. By integrating piezoelectric crystals (压电晶体) into flooring systems or roadways, the mechanical energy generated from footsteps or vehicle movement can be converted into electrical energy. This innovative approach could provide a sustainable source of power for streetlights or charging stations, showcasing the environmental benefits of piezoelectric crystals (压电晶体). In conclusion, the study and application of piezoelectric crystals (压电晶体) offer exciting opportunities across various industries. Their ability to convert mechanical energy into electrical energy and vice versa makes them invaluable in technology, medicine, and renewable energy solutions. As research continues to advance, we can expect to see even more innovative uses for piezoelectric crystals (压电晶体) that will enhance our lives and contribute to a more sustainable future.
我们周围的世界充满了许多迷人的现象,这些现象往往被忽视。其中一个现象是某些材料在受到机械应力时产生电荷的特性。这种特性被称为压电效应,主要观察到一种特殊类型的材料,即压电晶体(piezoelectric crystal)。这些晶体具有独特的结构,使它们能够将机械能转换为电能,反之亦然。 压电晶体(piezoelectric crystal)的发现可以追溯到19世纪初,当时皮埃尔和雅克·居里首次在石英晶体中观察到了这种效应。从那时起,压电晶体(piezoelectric crystal)的应用显著扩大,影响了电子学、医学甚至环境监测等多个领域。 在电子学中,压电晶体(piezoelectric crystal)通常用于麦克风和扬声器等设备。当声波撞击含有压电晶体(piezoelectric crystal)的麦克风时,机械振动使晶体产生电信号,然后可以放大和记录。相反,在扬声器中,电信号被发送到压电晶体(piezoelectric crystal),使其振动并产生声波。这种能量的双向转换展示了压电晶体(piezoelectric crystal)在音频技术中的多功能性。 此外,压电晶体(piezoelectric crystal)在医学成像技术中也扮演着关键角色,例如超声波。在超声波机器中,压电晶体(piezoelectric crystal)用于向身体发射声波。当这些声波遇到不同的组织时,它们会反弹并被同一或另一压电晶体(piezoelectric crystal)检测到。返回的信号随后被转换为图像,使医疗专业人员能够诊断和监测各种病症。这一应用突显了压电晶体(piezoelectric crystal)如何推动医疗保健和患者安全的进步。 除了在电子学和医学中的应用外,压电晶体(piezoelectric crystal)还被用于传感器和执行器。例如,它们可以在压力传感器中找到,该传感器检测力或重量的变化。当施加压力到压电晶体(piezoelectric crystal)时,它会产生与施加的压力成比例的电信号。这种能力使它们非常适合于包括机器人和自动化在内的各种工业应用。 此外,可再生能源领域开始探索压电晶体(piezoelectric crystal)在能量收集中的潜力。通过将压电晶体(piezoelectric crystal)集成到地板系统或道路中,人们可以将来自脚步或车辆运动产生的机械能转换为电能。这种创新方法可以为路灯或充电站提供可持续的电源,展示了压电晶体(piezoelectric crystal)的环境益处。 总之,研究和应用压电晶体(piezoelectric crystal)为各个行业提供了令人兴奋的机会。它们将机械能转化为电能及其反向转换的能力使其在技术、医学和可再生能源解决方案中不可或缺。随着研究的不断推进,我们可以期待看到更多创新的压电晶体(piezoelectric crystal)使用,这将提升我们的生活并为更可持续的未来做出贡献。
相关单词