parametric resonance

简明释义

参量谐振

英英释义

Parametric resonance is a phenomenon in which a system exhibits increased amplitude of oscillation due to periodic changes in the parameters of the system, typically in response to an external driving force.

参数共振是一种现象,其中由于系统参数的周期性变化,系统表现出振幅增加的特性,通常是对外部驱动力的响应。

例句

1.Researchers are investigating how parametric resonance 参数共振 can be utilized in energy harvesting technologies.

研究人员正在调查如何利用参数共振来开发能量收集技术。

2.The concept of parametric resonance 参数共振 is crucial in understanding the behavior of oscillating systems.

理解振荡系统的行为时,参数共振的概念至关重要。

3.The phenomenon of parametric resonance 参数共振 can lead to catastrophic failures in mechanical systems if not properly managed.

如果管理不当,参数共振可能会导致机械系统的灾难性故障。

4.The engineers studied the effects of parametric resonance 参数共振 in the design of the new bridge to ensure stability.

工程师们研究了新桥设计中参数共振的影响,以确保稳定性。

5.In the laboratory, we observed parametric resonance 参数共振 when the frequency of the driving force matched the natural frequency of the system.

在实验室中,当驱动力的频率与系统的自然频率匹配时,我们观察到了参数共振

作文

In the realm of physics and engineering, the concept of parametric resonance plays a crucial role in understanding how systems respond to varying parameters. To put it simply, parametric resonance refers to a phenomenon where a system oscillates with greater amplitude at certain frequencies due to periodic changes in its parameters, such as stiffness or mass. This effect is particularly significant in systems that can be described by differential equations, where the parameters themselves are functions of time. One of the most common examples of parametric resonance can be observed in a swing. When a person pushes a swing at just the right moment, the swing moves higher and higher. This is analogous to parametric resonance, where the push corresponds to the periodic change in the swing's energy input. If the timing is off, the swing may not gain much height, demonstrating how critical the parameters' timing and frequency are in achieving resonance.In engineering applications, parametric resonance can be both beneficial and detrimental. For instance, in mechanical systems, engineers must consider this phenomenon when designing structures or components. If a structure experiences forces that match the natural frequency altered by a changing parameter, it can lead to excessive vibrations and potentially catastrophic failures. An example of this can be seen in bridges or buildings during earthquakes, where the shifting ground can change the effective parameters of the structure, risking parametric resonance and resulting in significant damage.Conversely, parametric resonance can also be harnessed for positive outcomes in various technologies. In the field of optics, researchers utilize parametric resonance in devices like lasers and optical amplifiers. By exploiting the periodic variation of certain parameters, they can enhance the output power of these devices, leading to more efficient and powerful technological applications.Moreover, parametric resonance is not limited to mechanical systems; it can also be found in electrical circuits. For instance, in certain types of oscillators, the changing capacitance or inductance can cause the circuit to resonate at specific frequencies, amplifying the signal. This principle is vital in designing communication systems, where precise control over frequency and signal strength is necessary.Understanding parametric resonance requires a solid grasp of differential equations and dynamic systems. Engineers and physicists must analyze the stability of systems under varying conditions to predict when parametric resonance might occur. This involves not only mathematical modeling but also experimental validation, where real-world tests help confirm theoretical predictions.In conclusion, parametric resonance is a fascinating and complex phenomenon that illustrates the interplay between parameters and oscillations in various systems. Whether it leads to challenges in engineering or opens new avenues in technology, the implications of parametric resonance are profound. As we continue to explore and understand this concept, we gain insights into the fundamental principles governing the behavior of dynamic systems, ultimately enhancing our ability to innovate and create more resilient structures and devices.

在物理和工程领域,参数共振的概念在理解系统如何响应变化的参数方面起着至关重要的作用。简单来说,参数共振是指一种现象,其中由于参数(如刚度或质量)的周期性变化,系统以更大的振幅在某些频率下振荡。这种效应在可以用微分方程描述的系统中尤为重要,其中参数本身是时间的函数。最常见的< span>参数共振示例可以在秋千中观察到。当一个人恰好在正确的时刻推秋千时,秋千会越来越高。这类似于参数共振,其中推力对应于秋千能量输入的周期性变化。如果时机不对,秋千可能不会升得太高,这表明参数的时机和频率在实现共振中的关键性。在工程应用中,参数共振可能既有益又有害。例如,在机械系统中,工程师在设计结构或部件时必须考虑这种现象。如果一个结构经历的力量与由于参数变化而改变的固有频率相匹配,就可能导致过度振动并可能导致灾难性故障。一个例子可以在桥梁或建筑物在地震期间看到,在这种情况下,移动的地面可以改变结构的有效参数,冒着参数共振的风险,从而导致重大损坏。相反,参数共振也可以被利用,以便在各种技术中获得积极成果。在光学领域,研究人员利用参数共振在激光器和光放大器等设备中。通过利用某些参数的周期性变化,他们可以增强这些设备的输出功率,从而导致更高效和更强大的技术应用。此外,参数共振不仅限于机械系统;它也可以在电路中找到。例如,在某些类型的振荡器中,变化的电容或电感可以导致电路在特定频率下共振,从而放大信号。这一原理在设计通信系统中至关重要,因为在这些系统中,对频率和信号强度的精确控制是必要的。理解参数共振需要扎实的微分方程和动态系统的基础知识。工程师和物理学家必须分析在不同条件下系统的稳定性,以预测何时可能发生参数共振。这不仅涉及数学建模,还涉及实验验证,真实世界的测试有助于确认理论预测。总之,参数共振是一种迷人而复杂的现象,展示了各种系统中参数和振荡之间的相互作用。无论是导致工程挑战还是开辟技术新途径,参数共振的影响都很深远。随着我们继续探索和理解这一概念,我们获得了对支配动态系统行为的基本原则的深入洞察,最终增强了我们创新和创造更具韧性的结构和设备的能力。

相关单词

parametric

parametric详解:怎么读、什么意思、用法