oxidation reaction
简明释义
氧化反应
英英释义
An oxidation reaction is a chemical process in which a substance loses electrons, resulting in an increase in its oxidation state. | 氧化反应是一个化学过程,其中一种物质失去电子,从而导致其氧化态的增加。 |
例句
1.In cellular respiration, glucose undergoes an oxidation reaction 氧化反应 to produce energy for the cell.
在细胞呼吸过程中,葡萄糖经历了一次氧化反应 氧化反应,为细胞提供能量。
2.The browning of cut apples is due to an oxidation reaction 氧化反应 that occurs when the flesh is exposed to air.
切开的苹果变棕色是因为暴露在空气中时发生了氧化反应 氧化反应。
3.The rusting of iron is an example of an oxidation reaction 氧化反应 that occurs when iron reacts with oxygen in the presence of moisture.
铁锈的形成是一个例子,说明了氧化反应 氧化反应,它发生在铁与氧气在潮湿环境中反应时。
4.Combustion is a common oxidation reaction 氧化反应 where a substance reacts rapidly with oxygen, producing heat and light.
燃烧是一种常见的氧化反应 氧化反应,其中物质与氧气迅速反应,产生热量和光。
5.In batteries, an oxidation reaction 氧化反应 occurs at the anode, which releases electrons.
在电池中,阳极发生氧化反应 氧化反应,释放电子。
作文
In the realm of chemistry, understanding the various types of reactions is crucial for both students and professionals. One such reaction that plays a fundamental role in numerous chemical processes is the oxidation reaction. An oxidation reaction is defined as a chemical process in which a substance loses electrons, resulting in an increase in oxidation state. This concept not only applies to simple reactions but also extends to complex biochemical pathways, making it a cornerstone of both organic and inorganic chemistry.To illustrate the significance of oxidation reactions, let us consider the example of cellular respiration, a vital process that occurs in all living organisms. During cellular respiration, glucose (C6H12O6) undergoes an oxidation reaction where it is oxidized to produce carbon dioxide (CO2) and water (H2O), releasing energy stored in its chemical bonds. The overall reaction can be summarized as follows:C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + EnergyIn this process, glucose loses electrons as it is transformed into carbon dioxide, showcasing how oxidation reactions are integral to energy production in cells.Moreover, oxidation reactions are not limited to biological systems; they are also fundamental in industrial applications. For instance, the rusting of iron is a classic example of an oxidation reaction. When iron is exposed to oxygen and moisture, it undergoes a series of reactions that lead to the formation of iron oxide (rust). This process can be represented as:4 Fe + 3 O2 + 6 H2O → 4 Fe(OH)3The rusting of iron not only weakens structures but also leads to significant economic losses, highlighting the importance of understanding oxidation reactions to develop effective prevention strategies.Furthermore, oxidation reactions are essential in the field of energy production, particularly in batteries. In a typical battery, chemical energy is converted into electrical energy through oxidation reactions. For example, in a zinc-carbon battery, zinc is oxidized while manganese dioxide is reduced, allowing for the flow of electrons and the generation of electrical power. This interplay of oxidation reactions is what makes batteries functional and efficient.In addition to these practical applications, the study of oxidation reactions also has profound implications in environmental science. For instance, the process of photosynthesis, where carbon dioxide and water are converted into glucose and oxygen using sunlight, involves oxidation reactions that are crucial for life on Earth. Understanding these reactions allows scientists to explore solutions to pressing issues such as climate change and pollution.In conclusion, the concept of oxidation reactions is multifaceted and deeply embedded in various scientific disciplines. Whether it is in the context of biological processes, industrial applications, or environmental science, oxidation reactions are pivotal to our understanding of chemistry and its real-world implications. As we continue to explore the intricacies of chemical reactions, the importance of mastering concepts like oxidation reactions cannot be overstated, as they pave the way for innovations and solutions to some of the world's most challenging problems.
在化学领域,理解各种反应类型对学生和专业人士来说至关重要。其中一个在众多化学过程中发挥基础作用的反应是氧化反应。氧化反应被定义为一种化学过程,其中物质失去电子,导致氧化态增加。这个概念不仅适用于简单反应,还扩展到复杂的生化路径,使其成为有机和无机化学的基石。为了说明氧化反应的重要性,让我们考虑细胞呼吸的例子,这一过程在所有生物体中都至关重要。在细胞呼吸过程中,葡萄糖(C6H12O6)经历了一次氧化反应,在此过程中它被氧化为二氧化碳(CO2)和水(H2O),释放出储存在其化学键中的能量。整体反应可以总结如下:C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + 能量在这个过程中,葡萄糖失去电子,转变为二氧化碳,展示了氧化反应在细胞能量生产中的重要性。此外,氧化反应不仅限于生物系统,它们在工业应用中也具有基础性。例如,铁的生锈就是一个经典的氧化反应的例子。当铁暴露在氧气和潮湿环境中时,它经历了一系列反应,导致氧化铁(锈)的形成。这个过程可以表示为:4 Fe + 3 O2 + 6 H2O → 4 Fe(OH)3铁的生锈不仅削弱了结构,还导致显著的经济损失,这突显了理解氧化反应的重要性,以制定有效的预防策略。此外,氧化反应在能源生产领域也是必不可少的,特别是在电池中。在典型的电池中,化学能通过氧化反应转化为电能。例如,在锌碳电池中,锌被氧化,而二氧化锰被还原,从而允许电子流动并产生电力。这种氧化反应的相互作用使电池功能正常且高效。除了这些实际应用外,氧化反应的研究在环境科学中也有深远的影响。例如,光合作用过程中,二氧化碳和水在阳光的作用下被转化为葡萄糖和氧气,这涉及到氧化反应,对地球上的生命至关重要。理解这些反应使科学家能够探索解决气候变化和污染等紧迫问题的方案。总之,氧化反应的概念是多方面的,深深植根于各种科学学科中。无论是在生物过程、工业应用还是环境科学的背景下,氧化反应都是我们理解化学及其现实世界影响的关键。随着我们继续探索化学反应的复杂性,掌握像氧化反应这样的概念的重要性不言而喻,因为它们为创新和解决一些世界上最具挑战性的问题铺平了道路。
相关单词