numerical aperture

简明释义

数值孔径

英英释义

Numerical aperture (NA) is a dimensionless number that characterizes the range of angles over which a microscope objective can accept or emit light. It is defined as the sine of the maximum half-angle of the cone of light that can enter or exit the lens, multiplied by the refractive index of the medium in which the lens is working.

数值孔径(NA)是一个无量纲的数字,用于表征显微镜物镜能够接受或发射光线的角度范围。它被定义为能够进入或离开镜头的光锥的最大半角的正弦值,乘以镜头工作介质的折射率。

例句

1.The numerical aperture of the microscope determines its ability to gather light and resolve fine specimen detail.

显微镜的数值孔径决定了其收集光线和解析精细样本细节的能力。

2.When designing lenses, engineers must consider the numerical aperture to optimize performance.

在设计镜头时,工程师必须考虑数值孔径以优化性能。

3.In optical fibers, a higher numerical aperture means better light-gathering ability.

在光纤中,较高的数值孔径意味着更好的光收集能力。

4.A microscope with a high numerical aperture can provide clearer images of small structures.

具有高数值孔径的显微镜可以提供小结构的更清晰图像。

5.The numerical aperture is crucial for determining the resolution of an imaging system.

对于确定成像系统的分辨率,数值孔径至关重要。

作文

Understanding the concept of numerical aperture is essential for anyone involved in microscopy or optical systems. The term refers to a dimensionless number that characterizes the range of angles over which a microscope objective can accept or emit light. Essentially, it defines the light-gathering ability of the lens system and plays a crucial role in determining the resolution and brightness of the images produced by the microscope. The numerical aperture is calculated using the formula: NA = n * sin(θ), where 'n' is the refractive index of the medium in which the lens is working (typically air or oil), and 'θ' is the half-angle of the maximum cone of light that can enter or exit the lens. A higher numerical aperture indicates a greater ability of the lens to gather light, which directly correlates to better resolution and improved image clarity. In practical terms, understanding numerical aperture is vital when selecting lenses for specific applications. For instance, in biological microscopy, where observing cellular structures is crucial, objectives with high numerical aperture values are often used. This allows for finer details to be resolved, which is particularly important when studying live cells or intricate tissue samples. Moreover, the numerical aperture also influences the depth of field in microscopy. A lens with a high numerical aperture tends to have a shallower depth of field, meaning that while it can produce highly detailed images of a specific plane, it may not capture as much of the surrounding context in focus. This characteristic can be both an advantage and a disadvantage depending on the specific requirements of the observation being made. Additionally, the numerical aperture is not only relevant in biological studies but also in materials science, semiconductor inspection, and various engineering fields. As technology advances and the need for precision increases, understanding how to manipulate and utilize numerical aperture becomes even more critical. In conclusion, mastering the concept of numerical aperture goes beyond mere academic knowledge; it is a fundamental aspect of effective microscopy. By comprehending how numerical aperture affects image quality, resolution, and depth of field, practitioners can make informed decisions about the tools they use and the techniques they employ in their work. Whether in a laboratory setting or an industrial application, the implications of numerical aperture are vast and significant, underscoring the importance of this optical property in modern science and technology.

理解数值孔径的概念对于任何参与显微镜或光学系统的人来说都是必不可少的。这个术语指的是一个无量纲的数字,表征显微镜物镜可以接受或发射光的角度范围。本质上,它定义了镜头系统的聚光能力,并在决定显微镜产生的图像的分辨率和亮度方面起着至关重要的作用。数值孔径的计算公式为:NA = n * sin(θ),其中'n'是镜头工作的介质的折射率(通常是空气或油),而'θ'是能够进入或退出镜头的光锥的最大半角。较高的数值孔径表示镜头聚集光的能力更强,这直接与更好的分辨率和更清晰的图像相关联。在实际应用中,理解数值孔径在选择特定应用的镜头时至关重要。例如,在生物显微镜中,观察细胞结构至关重要,因此通常使用具有高数值孔径值的物镜。这使得可以解析出更精细的细节,这在研究活细胞或复杂的组织样本时尤为重要。此外,数值孔径还会影响显微镜的景深。具有高数值孔径的镜头往往具有较浅的景深,这意味着尽管它可以在特定平面上生成高度详细的图像,但可能无法将周围的上下文捕捉得同样清晰。这一特性根据观察的具体要求,可能是优势也可能是劣势。此外,数值孔径不仅在生物研究中相关,在材料科学、半导体检测和各种工程领域也同样重要。随着技术的进步和对精度需求的增加,理解如何操控和利用数值孔径变得更加关键。总之,掌握数值孔径的概念不仅仅是学术知识,它是有效显微镜使用的基本方面。通过理解数值孔径如何影响图像质量、分辨率和景深,实践者可以就他们所使用的工具和所采用的技术做出明智的决策。无论是在实验室环境还是工业应用中,数值孔径的影响都是广泛而重要的,突显了这一光学属性在现代科学和技术中的重要性。

相关单词

numerical

numerical详解:怎么读、什么意思、用法

aperture

aperture详解:怎么读、什么意思、用法