lattice parameter
简明释义
晶格常数
英英释义
例句
1.In X-ray diffraction studies, the lattice parameter 晶格参数 can be calculated from the diffraction angles.
在X射线衍射研究中,可以通过衍射角计算lattice parameter
晶格参数
。
2.By measuring the lattice parameter 晶格参数, researchers can infer the types of atoms present in a crystal.
通过测量lattice parameter
晶格参数
,研究人员可以推断晶体中存在的原子类型。
3.Different temperatures can affect the lattice parameter 晶格参数 of materials due to thermal expansion.
不同的温度会由于热膨胀影响材料的lattice parameter
晶格参数
。
4.The lattice parameter 晶格参数 of a crystal can indicate its purity and structural integrity.
晶体的lattice parameter
晶格参数
可以指示其纯度和结构完整性。
5.The determination of the lattice parameter 晶格参数 is crucial for understanding the crystal structure.
确定lattice parameter
晶格参数
对理解晶体结构至关重要。
作文
In the field of materials science and solid-state physics, the term lattice parameter refers to the physical dimensions that define the unit cell of a crystal lattice. A crystal lattice is a three-dimensional arrangement of atoms, ions, or molecules in a periodic manner, which forms the foundation of many crystalline materials. The lattice parameter plays a crucial role in determining the properties of these materials, including their strength, thermal conductivity, and electrical properties.The lattice parameter consists of a set of values that describe the size and shape of the unit cell. For instance, in a cubic crystal system, the lattice parameter is typically represented by a single value, 'a', which denotes the length of the edges of the cube. In contrast, other crystal systems, such as tetragonal or orthorhombic, require multiple lattice parameters to fully describe the unit cell dimensions. These parameters are essential for crystallographers and materials scientists, as they provide insights into how atoms are arranged within the material and how this arrangement influences its macroscopic properties.Understanding the implications of the lattice parameter is vital for various applications in technology and industry. For example, in semiconductor manufacturing, the precise control of the lattice parameter can significantly affect the electronic properties of materials. Silicon, which has a well-defined lattice parameter, is widely used in electronics due to its favorable electronic characteristics. Any alterations in the lattice parameter through doping or strain can lead to changes in the band gap and, consequently, the performance of semiconductor devices.Moreover, the lattice parameter is not a fixed value; it can change under different conditions such as temperature, pressure, or chemical composition. This variability is particularly important in fields like geology and materials engineering, where understanding how materials behave under extreme conditions is crucial. For instance, high-pressure experiments can reveal how the lattice parameter of minerals changes, providing insights into the Earth's interior and the stability of various mineral phases.In addition to its role in physical properties, the lattice parameter also has implications for the theoretical modeling of materials. Computational methods, such as density functional theory (DFT), often rely on accurate lattice parameters to predict the behavior of materials at the atomic level. By inputting the correct lattice parameter, researchers can simulate various phenomena, including phase transitions, defect formation, and chemical reactions within solids.In conclusion, the lattice parameter is a fundamental concept in crystallography and materials science that encapsulates the geometric characteristics of a crystal lattice. Its importance extends beyond mere definitions; it affects the properties and behaviors of materials across various applications. From semiconductor technology to geological studies, understanding the lattice parameter is essential for advancing our knowledge and capabilities in manipulating materials for innovative solutions.
在材料科学和固态物理学领域,术语晶格参数指的是定义晶体晶格单元格的物理尺寸。晶体晶格是原子、离子或分子以周期性方式排列的三维结构,它构成了许多晶体材料的基础。晶格参数在确定这些材料的特性方面发挥着至关重要的作用,包括它们的强度、热导率和电气特性。晶格参数由一组值组成,这些值描述了单元格的大小和形状。例如,在立方晶系中,晶格参数通常用一个值'a'表示,该值表示立方体边缘的长度。相反,其他晶体系统,如四方或正交,需要多个晶格参数来充分描述单元格尺寸。这些参数对于晶体学家和材料科学家至关重要,因为它们提供了有关材料内部原子排列及其如何影响宏观特性的见解。理解晶格参数的含义对于技术和工业中的各种应用至关重要。例如,在半导体制造中,精确控制晶格参数可以显著影响材料的电子特性。硅具有明确的晶格参数,由于其有利的电子特性,被广泛用于电子产品中。通过掺杂或应变对晶格参数的任何改变都可能导致带隙的变化,从而影响半导体器件的性能。此外,晶格参数并不是一个固定值;它可以在不同条件下发生变化,例如温度、压力或化学成分。这种变异性在地质学和材料工程等领域尤其重要,因为了解材料在极端条件下的行为至关重要。例如,高压实验可以揭示矿物的晶格参数如何变化,从而提供对地球内部和各种矿物相稳定性的见解。除了在物理特性中的作用,晶格参数还对材料的理论建模具有影响。计算方法,如密度泛函理论(DFT),通常依赖于准确的晶格参数来预测材料在原子级别的行为。通过输入正确的晶格参数,研究人员可以模拟各种现象,包括相变、缺陷形成和固体内的化学反应。总之,晶格参数是晶体学和材料科学中的一个基本概念,它概括了晶体晶格的几何特性。它的重要性超越了简单的定义;它影响着各种应用中材料的特性和行为。从半导体技术到地质研究,理解晶格参数对于推动我们操控材料以实现创新解决方案的知识和能力至关重要。
相关单词