hole electron recombination

简明释义

电子 空穴复合

英英释义

Hole electron recombination refers to the process in semiconductor physics where a free electron recombines with a hole (a vacancy left by an electron) in a material, leading to the release of energy, often in the form of light or heat.

孔电子复合是指在半导体物理中,自由电子与材料中的孔(电子留下的空位)复合的过程,导致能量释放,通常以光或热的形式表现出来。

例句

1.To enhance the performance of LEDs, engineers focus on reducing hole electron recombination (孔电子复合) rates.

为了提高LED的性能,工程师们专注于降低hole electron recombination孔电子复合)速率。

2.The efficiency of solar cells can be improved by minimizing hole electron recombination (孔电子复合).

通过最小化hole electron recombination孔电子复合),可以提高太阳能电池的效率。

3.Research indicates that hole electron recombination (孔电子复合) is a significant loss mechanism in photonic devices.

研究表明,hole electron recombination孔电子复合)是光子设备中的一个重要损失机制。

4.In semiconductor physics, hole electron recombination (孔电子复合) plays a crucial role in device efficiency.

在半导体物理中,hole electron recombination孔电子复合)在器件效率中起着至关重要的作用。

5.The study of hole electron recombination (孔电子复合) helps in understanding charge carrier dynamics.

hole electron recombination孔电子复合)的研究有助于理解电荷载流子的动态。

作文

In the realm of solid-state physics and semiconductor technology, understanding the concept of hole electron recombination is crucial. This phenomenon plays a significant role in the operation of various electronic devices, including diodes, transistors, and solar cells. To grasp the importance of hole electron recombination, we must first delve into the basic principles of semiconductors. Semiconductors are materials that have electrical conductivity between that of insulators and conductors. They possess unique properties that allow them to conduct electricity under certain conditions, making them essential for modern electronics.When a semiconductor is doped with impurities, it creates regions with an excess of electrons (n-type) or holes (p-type). Holes are essentially the absence of electrons in the crystal lattice of the semiconductor, and they behave as positive charge carriers. On the other hand, electrons are negatively charged particles that can move freely through the material. The interaction between these two types of charge carriers leads to the phenomenon known as hole electron recombination.Hole electron recombination occurs when an electron from the conduction band falls into a hole in the valence band, effectively annihilating both the electron and the hole. This process releases energy, usually in the form of heat or light, depending on the material and the conditions under which the recombination takes place. In light-emitting diodes (LEDs), for instance, the recombination of electrons and holes results in the emission of photons, producing visible light.The rate of hole electron recombination is influenced by several factors, including temperature, doping concentration, and the presence of defects in the semiconductor material. At higher temperatures, the increased thermal energy can lead to more frequent collisions between electrons and holes, thus enhancing the recombination rate. Conversely, lower temperatures can slow down this process, allowing for better charge carrier mobility and potentially improving the efficiency of devices like solar cells.In photovoltaic devices, hole electron recombination is a critical factor that affects their efficiency. When light strikes a solar cell, it generates electron-hole pairs. For the solar cell to function effectively, these charge carriers must be separated and collected at the electrodes. However, if the recombination rate is too high, many of these charge carriers will recombine before they can contribute to the electric current, leading to energy losses. Therefore, researchers continuously seek ways to minimize hole electron recombination to enhance the performance of solar cells and other semiconductor devices.In conclusion, hole electron recombination is a fundamental process in semiconductor physics that significantly impacts the functionality of electronic devices. By understanding this phenomenon, engineers and scientists can develop more efficient materials and improve the performance of various technologies, from everyday electronics to advanced renewable energy systems. As we continue to innovate in the field of electronics, the study of hole electron recombination will remain a vital area of research, helping us to unlock new possibilities in energy conversion and storage.

在固态物理和半导体技术领域,理解“hole electron recombination”这一概念至关重要。这一现象在二极管、晶体管和太阳能电池等各种电子设备的运行中发挥着重要作用。要掌握“hole electron recombination”的重要性,我们必须首先深入了解半导体的基本原理。半导体是一种电导率介于绝缘体和导体之间的材料。它们具有独特的特性,允许在某些条件下导电,使其在现代电子设备中至关重要。当半导体掺杂杂质时,会形成多余电子(n型)或空穴(p型)的区域。空穴本质上是半导体晶格中缺少电子的地方,它们表现为正电荷载体。另一方面,电子是可以自由移动的带负电的粒子。这两种类型的电荷载体之间的相互作用导致了“hole electron recombination”现象的出现。“hole electron recombination”发生在导带中的一个电子掉入价带中的一个空穴时,有效地消灭了电子和空穴。这一过程释放出能量,通常以热或光的形式释放,具体取决于材料和重组发生的条件。例如,在发光二极管(LED)中,电子和空穴的重组导致光子的发射,从而产生可见光。“hole electron recombination”的速率受多个因素的影响,包括温度、掺杂浓度和半导体材料中缺陷的存在。在较高温度下,增加的热能可以导致电子和空穴之间更频繁的碰撞,从而增强重组速率。相反,较低的温度可以减慢这一过程,允许更好的电荷载流子迁移,并可能提高太阳能电池等设备的效率。在光伏设备中,“hole electron recombination”是影响其效率的关键因素。当光线照射到太阳能电池上时,会生成电子-空穴对。为了使太阳能电池有效工作,这些电荷载流子必须在电极处被分离和收集。然而,如果重组速率过高,许多这些电荷载流子将在贡献电流之前重新组合,从而导致能量损失。因此,研究人员不断寻求方法来最小化“hole electron recombination”,以提高太阳能电池和其他半导体设备的性能。总之,“hole electron recombination”是半导体物理中的一个基本过程,对电子设备的功能有显著影响。通过理解这一现象,工程师和科学家可以开发更高效的材料,提高各种技术的性能,从日常电子产品到先进的可再生能源系统。随着我们在电子领域的不断创新,“hole electron recombination”的研究将仍然是一个重要的研究领域,帮助我们解锁能源转换和存储的新可能性。

相关单词

hole

hole详解:怎么读、什么意思、用法

recombination

recombination详解:怎么读、什么意思、用法