hole electron pair
简明释义
电子 空穴对
英英释义
例句
1.When light is absorbed in a semiconductor, it generates a hole electron pair 空穴电子对, which can contribute to electrical conductivity.
当光被半导体吸收时,会生成一个hole electron pair 空穴电子对,这可以促进电导率。
2.In semiconductor physics, the concept of a hole electron pair 空穴电子对 is essential for understanding charge carrier dynamics.
在半导体物理中,hole electron pair 空穴电子对 的概念对于理解电荷载流子动力学至关重要。
3.The recombination of hole electron pairs 空穴电子对 leads to the emission of light in LEDs.
在LED中,hole electron pairs 空穴电子对的复合导致光的发射。
4.In P-N junctions, the movement of hole electron pairs 空穴电子对 creates an electric field that is crucial for device operation.
在P-N结中,hole electron pairs 空穴电子对的移动产生了对器件操作至关重要的电场。
5.The efficiency of solar cells heavily relies on the generation and recombination of hole electron pairs 空穴电子对.
太阳能电池的效率在很大程度上依赖于hole electron pairs 空穴电子对的生成和复合。
作文
In the realm of solid-state physics and materials science, understanding the behavior of electrons in semiconductors is crucial. One of the fundamental concepts in this field is the notion of a hole electron pair, which plays a significant role in determining the electrical properties of materials. A hole electron pair refers to a pair consisting of a negatively charged electron and a positively charged hole. While it may seem counterintuitive to think of a 'hole' as a positive entity, it is essential to recognize that holes represent the absence of an electron in a material's structure. This absence can be thought of as a positive charge carrier, allowing for the movement of charge through the semiconductor. When an electron from the valence band gains enough energy, it can jump to the conduction band, leaving behind a vacancy or 'hole' in the valence band. This process creates a hole electron pair, where the electron contributes to electrical conductivity while the hole facilitates the movement of other electrons within the crystal lattice. The presence of these pairs is critical in understanding how semiconductors function in various electronic devices, such as diodes and transistors.Moreover, the dynamics of hole electron pairs are influenced by temperature, impurities, and external electric fields. As temperature increases, more electrons gain sufficient energy to transition to the conduction band, resulting in an increase in the density of hole electron pairs. This phenomenon is vital for the operation of thermally activated devices. Similarly, introducing dopants into a semiconductor can significantly alter the concentration of charge carriers, thus affecting the behavior of hole electron pairs. For instance, n-type doping introduces extra electrons, while p-type doping creates additional holes, enhancing the overall conductivity of the material.The concept of hole electron pairs extends beyond just theoretical understanding; it has practical implications in the design and optimization of semiconductor materials. Engineers and scientists strive to manipulate these pairs to improve the efficiency of solar cells, enhance the performance of LEDs, and develop faster computing technologies. By controlling the formation and recombination of hole electron pairs, researchers can tailor materials to meet specific needs, leading to innovations that drive the technology forward.In conclusion, the hole electron pair is a fundamental concept in the study of semiconductors that encapsulates the interplay between electrons and holes. Understanding this relationship is key to advancing technology in electronics and materials science. As we continue to explore the potential of these charge carriers, the implications for future innovations are vast, promising a new era of technological advancement fueled by the mastery of hole electron pairs.
在固态物理和材料科学领域,理解半导体中电子的行为至关重要。这个领域的一个基本概念是孔电子对的概念,它在决定材料的电气特性方面发挥着重要作用。孔电子对指的是由带负电的电子和带正电的孔组成的一对。虽然将“孔”视为正的实体似乎有悖常理,但必须认识到,孔代表了材料结构中电子的缺失。这种缺失可以被视为一种正电荷载体,从而允许电荷在半导体中移动。当价带中的一个电子获得足够的能量时,它可以跃迁到导带,留下一个空位或“孔”在价带中。这一过程创造了一个孔电子对,其中电子促进电导,而孔则促进晶格中其他电子的移动。这些对的存在对于理解半导体在各种电子设备(如二极管和晶体管)中的功能至关重要。此外,孔电子对的动态受到温度、杂质和外部电场的影响。随着温度的升高,更多的电子获得足够的能量跃迁到导带,导致孔电子对的密度增加。这一现象对热激活设备的运行至关重要。同样,在半导体中引入掺杂剂可以显著改变载流子的浓度,从而影响孔电子对的行为。例如,n型掺杂引入额外的电子,而p型掺杂则产生额外的孔,从而增强材料的整体导电性。孔电子对的概念不仅限于理论理解;它在半导体材料的设计和优化中具有实际意义。工程师和科学家努力操控这些对,以提高太阳能电池的效率,增强LED的性能,并开发更快的计算技术。通过控制孔电子对的形成和复合,研究人员可以定制材料以满足特定需求,从而推动技术的创新。总之,孔电子对是半导体研究中的一个基本概念, encapsulates 了电子和孔之间的相互作用。理解这种关系是推进电子学和材料科学技术的关键。随着我们继续探索这些载流子的潜力,对未来创新的影响是巨大的,承诺通过掌握孔电子对开启技术进步的新纪元。
相关单词