electron hole pair generation

简明释义

电子空穴对发生

英英释义

Electron hole pair generation refers to the process in which an electron is excited from the valence band to the conduction band of a semiconductor, leaving behind a vacancy or 'hole' in the valence band. This process creates a free electron and a corresponding hole that can contribute to electrical conductivity.

电子-空穴对生成是指在半导体中,电子从价带激发到导带的过程,这一过程在价带中留下一个空位或“空穴”。该过程产生一个自由电子和一个相应的空穴,能够促进电导率。

例句

1.In photodetectors, the process of electron hole pair generation is crucial for converting light into electrical signals.

在光电探测器中,电子-空穴对生成的过程对于将光转换为电信号至关重要。

2.Understanding electron hole pair generation helps in designing more efficient LED lights.

理解电子-空穴对生成有助于设计更高效的LED灯。

3.The efficiency of solar cells is largely determined by the rate of electron hole pair generation, which refers to the creation of free charge carriers in the material.

太阳能电池的效率在很大程度上取决于电子-空穴对生成的速率,这指的是材料中自由电荷载流子的产生。

4.Researchers are studying materials that enhance electron hole pair generation to improve the performance of semiconductor devices.

研究人员正在研究能够增强电子-空穴对生成的材料,以提高半导体器件的性能。

5.The temperature can significantly affect the rate of electron hole pair generation in semiconductors.

温度可以显著影响半导体中电子-空穴对生成的速率。

作文

In the realm of semiconductor physics, one of the fundamental processes that underpins the functionality of electronic devices is known as electron hole pair generation. This phenomenon occurs when energy is supplied to a semiconductor material, allowing electrons to jump from the valence band to the conduction band. As a result, an electron is freed from its atomic bond, leaving behind a vacancy known as a 'hole'. The presence of both free electrons and holes in the semiconductor is crucial for its conductive properties. Understanding electron hole pair generation is essential for anyone delving into the fields of electronics and materials science.The process begins when a semiconductor is exposed to external energy, such as heat or light. For instance, in photovoltaic cells, sunlight provides the necessary energy to excite electrons. When these electrons gain enough energy, they can overcome the energy gap between the valence band and the conduction band. This transition results in the creation of an electron-hole pair, which is a critical aspect of how solar cells convert light energy into electrical energy.Once an electron hole pair generation occurs, the free electrons can move through the material, contributing to electric current. Meanwhile, the holes also play a significant role; they can attract nearby electrons, facilitating further conduction. This dynamic interaction between electrons and holes is what enables semiconductors to conduct electricity efficiently.Moreover, the efficiency of devices like transistors and diodes heavily relies on the effective generation and recombination of these pairs. In a transistor, for example, the control of electron flow through the gate terminal allows for the modulation of current, which is essential for amplification and switching applications. Understanding how electron hole pair generation works thus becomes pivotal in designing more efficient electronic components.In addition to its applications in solar cells and transistors, electron hole pair generation is also significant in various optoelectronic devices. Light-emitting diodes (LEDs) operate on the principle of recombining electrons and holes to emit light. When an electron falls back into a hole, energy is released in the form of photons, producing visible light. This process highlights the importance of controlled electron hole pair generation in developing advanced lighting technologies.Furthermore, researchers are continuously exploring new materials and methods to enhance electron hole pair generation. Innovations in nanotechnology, for instance, have led to the discovery of novel semiconductor materials that exhibit improved efficiency in generating these pairs. By manipulating the properties of these materials at the nanoscale, scientists aim to create devices that consume less energy while providing greater performance.In conclusion, electron hole pair generation is a vital concept in the field of semiconductor physics, influencing the design and functionality of numerous electronic devices. From solar cells to LEDs, the ability to generate and manipulate these pairs is crucial for advancing technology. As research progresses, a deeper understanding of this phenomenon will undoubtedly lead to more efficient and innovative applications in the future.

在半导体物理学领域,一个支撑电子设备功能的基本过程被称为电子空穴对生成。当能量被施加到半导体材料时,这一现象发生,使得电子能够从价带跃迁到导带。因此,电子从其原子键中释放出来,留下一个被称为“空穴”的空位。自由电子和空穴在半导体中的存在对其导电特性至关重要。理解电子空穴对生成对于任何深入电子学和材料科学领域的人来说都是必不可少的。这一过程始于半导体暴露在外部能量下,例如热或光。例如,在光伏电池中,阳光提供了必要的能量来激发电子。当这些电子获得足够的能量时,它们可以克服价带和导带之间的能量间隙。这一跃迁导致了电子-空穴对的生成,这是太阳能电池如何将光能转化为电能的关键方面。一旦发生电子空穴对生成,自由电子就可以通过材料移动,贡献电流。同时,空穴也发挥着重要作用;它们可以吸引附近的电子,促进进一步的导电。这种电子与空穴之间的动态相互作用使得半导体能够高效导电。此外,像晶体管和二极管等设备的效率在很大程度上依赖于这些对的有效生成和复合。在晶体管中,例如,通过栅极端子的电流调控允许电流的调制,这对于放大和开关应用至关重要。因此,理解电子空穴对生成的工作原理在设计更高效的电子元件时变得至关重要。除了在太阳能电池和晶体管中的应用外,电子空穴对生成在各种光电设备中也具有重要意义。发光二极管(LED)基于复合电子和空穴以发出光的原理。当电子回落到空穴中时,能量以光子的形式释放,产生可见光。这个过程突显了在开发先进照明技术中控制电子空穴对生成的重要性。此外,研究人员正在不断探索新材料和方法,以增强电子空穴对生成。例如,纳米技术的创新导致发现了表现出更高生成效率的新型半导体材料。通过在纳米尺度上操控这些材料的特性,科学家们旨在创造出能耗更低、性能更强的设备。总之,电子空穴对生成是半导体物理学领域中的一个重要概念,影响着众多电子设备的设计和功能。从太阳能电池到LED,生成和操控这些对的能力对于推动技术进步至关重要。随着研究的进展,对这一现象的更深入理解无疑将导致未来更高效和更具创新性的应用。

相关单词

hole

hole详解:怎么读、什么意思、用法

pair

pair详解:怎么读、什么意思、用法

generation

generation详解:怎么读、什么意思、用法