electron hole pair

简明释义

电子空穴对

英英释义

An electron hole pair refers to a pair of charge carriers in a semiconductor, where one is an electron (a negatively charged particle) and the other is a hole (the absence of an electron, behaving as a positively charged particle).

电子空穴对是指半导体中的一对电荷载流子,其中一个是电子(带负电粒子),另一个是空穴(缺少电子,表现为带正电粒子)。

例句

1.The mobility of charge carriers is influenced by the concentration of electron hole pairs 电子空穴对 in a material.

载流子的迁移率受材料中电子空穴对浓度的影响。

2.In semiconductor physics, an electron hole pair 电子空穴对 is created when a photon is absorbed.

在半导体物理中,当光子被吸收时,会产生一个电子空穴对

3.The efficiency of solar cells often depends on the generation of electron hole pairs 电子空穴对 under sunlight.

太阳能电池的效率往往取决于在阳光下生成的电子空穴对

4.When an electron hole pair 电子空穴对 recombines, it releases energy in the form of light.

当一个电子空穴对复合时,会以光的形式释放能量。

5.Understanding the dynamics of electron hole pairs 电子空穴对 is crucial for improving LED performance.

理解电子空穴对的动态对于提高LED性能至关重要。

作文

In the realm of semiconductor physics, the concept of an electron hole pair is fundamental to understanding how materials conduct electricity. To grasp this idea, one must first comprehend the roles of electrons and holes in a semiconductor. Electrons are negatively charged particles that can move freely within a material, while holes represent the absence of an electron in the atomic structure, effectively behaving as positively charged entities. The interaction between these two components is crucial for the operation of various electronic devices, including diodes and transistors.When a semiconductor is energized, typically by heat or light, some electrons gain enough energy to break free from their atomic bonds. This process creates an electron hole pair—the freed electron moves through the material, while the vacancy it leaves behind becomes a hole. These pairs play a vital role in charge transport within the semiconductor. The movement of electrons contributes to electrical conductivity, while holes can also move through the lattice by allowing adjacent electrons to fill the vacant spots, creating a flow of positive charge.The generation of electron hole pairs can occur through various mechanisms. One common method is thermal excitation, where increased temperature provides sufficient energy for electrons to escape their bonds. Another method is photonic excitation, which occurs when photons strike the semiconductor and impart energy to the electrons. Understanding these processes is essential for engineers and scientists working on semiconductor technologies, as the efficiency of devices often hinges on the generation and recombination rates of electron hole pairs.In practical applications, the manipulation of electron hole pairs is critical for the functioning of solar cells. In photovoltaic cells, sunlight is absorbed by a semiconductor material, generating electron hole pairs. These pairs are then separated by an internal electric field, leading to a flow of current that can be harnessed for power. The effectiveness of a solar cell largely depends on how well it can generate and separate these pairs, making the study of electron hole pairs essential for improving solar energy technologies.Moreover, the concept of electron hole pairs extends beyond semiconductors into the field of quantum mechanics. In certain materials, particularly those exhibiting superconductivity, the behavior of electron hole pairs can lead to fascinating phenomena such as Cooper pairs, which are responsible for superconductivity at low temperatures. This interplay between electrons and holes opens up new avenues for research and technological advancements.In conclusion, the understanding of electron hole pairs is pivotal in the field of electronics and material science. Their generation, movement, and recombination are integral to the functionality of various devices. As technology continues to advance, the exploration of electron hole pairs will undoubtedly lead to innovative solutions and improvements in electronic devices, renewable energy systems, and quantum technologies. Therefore, a solid grasp of this concept is not only beneficial but essential for anyone aspiring to work in the fields of physics and engineering.

在半导体物理学领域,电子空穴对的概念对于理解材料如何导电是基础。要掌握这一思想,首先必须理解电子和空穴在半导体中的作用。电子是可以在材料中自由移动的带负电粒子,而空穴则代表原子结构中缺失的电子,实际上表现为带正电的实体。这两者之间的相互作用对于各种电子设备的运行至关重要,包括二极管和晶体管。当半导体被激励时,通常是通过热或光,一些电子获得足够的能量以从原子键中释放出来。这一过程产生了一个电子空穴对——被释放的电子在材料中移动,而它留下的空位则变成一个空穴。这些对在半导体内的电荷传输中发挥着重要作用。电子的移动有助于电导率,而空穴也可以通过允许相邻的电子填补空缺位置而在晶格中移动,从而产生正电荷的流动。电子空穴对的生成可以通过多种机制发生。一种常见的方法是热激发,当温度升高时提供足够的能量使电子逃离其键合。另一种方法是光激发,当光子撞击半导体并将能量传递给电子时会发生这种情况。理解这些过程对于从事半导体技术工作的工程师和科学家至关重要,因为设备的效率往往取决于电子空穴对的生成和复合速率。在实际应用中,对电子空穴对的操控对太阳能电池的功能至关重要。在光伏电池中,阳光被半导体材料吸收,生成电子空穴对。这些对随后被内部电场分开,导致电流的流动,可以被利用来发电。太阳能电池的有效性在很大程度上取决于它能生成和分离这些对的能力,因此研究电子空穴对对于提高太阳能技术至关重要。此外,电子空穴对的概念不仅限于半导体,还扩展到量子力学领域。在某些材料中,特别是那些表现出超导性的材料中,电子空穴对的行为可以导致一些迷人的现象,如库珀对,这负责在低温下的超导性。这种电子与空穴之间的相互作用为研究和技术进步开辟了新的途径。总之,理解电子空穴对在电子和材料科学领域至关重要。它们的生成、运动和复合是各种设备功能的核心。随着技术的不断进步,对电子空穴对的探索无疑将导致创新解决方案和电子设备、可再生能源系统以及量子技术的改进。因此,扎实掌握这一概念对于任何希望在物理和工程领域工作的人来说不仅是有益的,更是必不可少的。

相关单词

hole

hole详解:怎么读、什么意思、用法

pair

pair详解:怎么读、什么意思、用法