electron cyclotron

简明释义

电子回旋加速器

英英释义

A phenomenon where electrons spiral around magnetic field lines due to the Lorentz force, resulting in a circular motion with a specific frequency known as the cyclotron frequency.

一种现象,电子因洛伦兹力在磁场线周围螺旋运动,导致以特定频率(称为回旋频率)进行圆周运动。

例句

1.The electron cyclotron 电子回旋 frequency is determined by the strength of the magnetic field and the mass of the electrons.

电子回旋 电子回旋频率由磁场强度和电子质量决定。

2.In fusion reactors, the electron cyclotron 电子回旋 heating method is essential for maintaining high temperatures.

在聚变反应堆中,电子回旋 电子回旋加热方法对于维持高温至关重要。

3.The research team utilized the electron cyclotron 电子回旋 resonance to enhance plasma confinement in their experiment.

研究小组利用电子回旋 电子回旋共振来增强他们实验中的等离子体约束。

4.Researchers studied the effects of the electron cyclotron 电子回旋 instability on plasma stability.

研究人员研究了电子回旋 电子回旋不稳定性对等离子体稳定性的影响。

5.Using the electron cyclotron 电子回旋 method, scientists were able to accelerate particles to unprecedented speeds.

利用电子回旋 电子回旋方法,科学家们能够将粒子加速到前所未有的速度。

作文

The phenomenon of the electron cyclotron is a fascinating aspect of plasma physics and electromagnetism. It refers to the motion of electrons in a magnetic field, where they spiral around the magnetic lines of force due to the Lorentz force. This behavior is not just a theoretical concept; it has practical applications in various fields, including fusion research, astrophysics, and even medical imaging technologies. Understanding the electron cyclotron motion can help scientists develop better methods for controlling plasma, which is essential for achieving nuclear fusion—a clean and virtually limitless source of energy.In a magnetic field, charged particles like electrons experience a force that is perpendicular to both their velocity and the magnetic field direction. As a result, instead of moving in a straight line, the electrons begin to trace out a circular path. The frequency at which these electrons orbit is known as the electron cyclotron frequency, which depends on the strength of the magnetic field and the charge-to-mass ratio of the electron. This frequency plays a crucial role in many experimental setups, especially in devices like tokamaks, which are used for fusion experiments.Moreover, the electron cyclotron resonance heating (ECRH) technique utilizes this principle to heat plasma efficiently. By generating microwaves at the electron cyclotron frequency, researchers can transfer energy directly to the electrons in the plasma, raising their temperature significantly. This method is particularly advantageous because it allows for precise control over the heating process, making it easier to achieve the conditions necessary for sustained nuclear fusion reactions.Astrophysicists also study the electron cyclotron phenomenon to understand cosmic phenomena such as solar flares and the behavior of charged particles in the Earth's magnetosphere. These natural occurrences often involve high-energy electrons spiraling around magnetic fields, and studying them provides insights into the dynamics of space weather and its effects on satellite communications and power grids on Earth.In addition to its applications in fusion and astrophysics, the electron cyclotron concept extends to medical imaging techniques, particularly in Magnetic Resonance Imaging (MRI). While MRI primarily relies on nuclear magnetic resonance, understanding the behavior of electrons in magnetic fields can enhance imaging techniques and lead to better diagnostic tools. The interplay between magnetic fields and charged particles is fundamental in developing advanced imaging modalities that can provide clearer and more detailed images of internal body structures.In conclusion, the electron cyclotron phenomenon is not merely an abstract concept confined to the realms of physics but a pivotal element with far-reaching implications across multiple scientific disciplines. From fusion energy research to astrophysics and medical imaging, the principles governing electron cyclotron motion are integral to advancing our understanding and capabilities within these fields. As we continue to explore the universe and harness new technologies, the significance of the electron cyclotron will undoubtedly grow, highlighting the interconnectedness of scientific inquiry and practical application.

“电子回旋”现象是等离子体物理和电磁学的一个迷人方面。它指的是电子在磁场中的运动,电子由于洛伦兹力沿着磁力线螺旋运动。这种行为不仅仅是一个理论概念;它在包括聚变研究、天体物理学甚至医学成像技术等多个领域中都有实际应用。理解“电子回旋”运动可以帮助科学家们开发更好的控制等离子体的方法,这对于实现核聚变——一种清洁且几乎无限的能源来源至关重要。在磁场中,带电粒子如电子会受到一种力,这种力与它们的速度和磁场方向都是垂直的。因此,电子不会直线运动,而是开始描绘出一个圆形路径。电子绕行的频率被称为“电子回旋”频率,它依赖于磁场的强度和电子的电荷与质量比。这一频率在许多实验装置中发挥着至关重要的作用,尤其是在用于聚变实验的托卡马克装置中。此外,“电子回旋”共振加热(ECRH)技术利用这一原理有效地加热等离子体。通过生成与“电子回旋”频率相对应的微波,研究人员可以将能量直接传递给等离子体中的电子,显著提高其温度。这种方法特别有利,因为它允许对加热过程进行精确控制,使得更容易达到持续核聚变反应所需的条件。天体物理学家也研究“电子回旋”现象,以理解太阳耀斑和地球磁层中带电粒子的行为等宇宙现象。这些自然现象通常涉及高能电子围绕磁场螺旋运动,研究它们提供了对空间天气动态及其对卫星通信和地球电网影响的洞察。除了在聚变和天体物理学中的应用外,“电子回旋”概念还扩展到医学成像技术,特别是在磁共振成像(MRI)中。虽然MRI主要依赖于核磁共振,但理解电子在磁场中的行为可以增强成像技术,并导致更好的诊断工具。磁场和带电粒子之间的相互作用是开发先进成像模式的基础,这些模式可以提供更清晰、更详细的内部身体结构图像。总之,“电子回旋”现象不仅仅是一个局限于物理学领域的抽象概念,而是一个在多个科学学科中具有深远影响的关键元素。从聚变能源研究到天体物理学和医学成像,支配“电子回旋”运动的原理对于推动我们在这些领域的理解和能力至关重要。随着我们继续探索宇宙并利用新技术,“电子回旋”的重要性无疑会增加,突显出科学探究与实际应用之间的相互关联。

相关单词

cyclotron

cyclotron详解:怎么读、什么意思、用法