diffusion gradient
简明释义
扩散杂质梯度
英英释义
例句
1.During cellular respiration, glucose is transported into the cells against the diffusion gradient (扩散梯度) using active transport mechanisms.
在细胞呼吸过程中,葡萄糖通过主动运输机制逆着diffusion gradient(扩散梯度)被运输进入细胞。
2.In a laboratory experiment, the diffusion gradient (扩散梯度) of dye can visually demonstrate how substances move from areas of high concentration to low concentration.
在实验室实验中,染料的diffusion gradient(扩散梯度)可以直观地展示物质如何从高浓度区域移动到低浓度区域。
3.The diffusion gradient (扩散梯度) of carbon dioxide is crucial for photosynthesis in plants.
二氧化碳的diffusion gradient(扩散梯度)对植物的光合作用至关重要。
4.The movement of oxygen across the cell membrane is driven by the diffusion gradient (扩散梯度) created by a higher concentration of oxygen outside the cell.
氧气通过细胞膜的运动是由细胞外部较高浓度的氧气产生的diffusion gradient(扩散梯度)驱动的。
5.In plants, water moves from the roots to the leaves due to the diffusion gradient (扩散梯度) established by transpiration.
在植物中,水分由于蒸腾作用建立的diffusion gradient(扩散梯度)从根部移动到叶子。
作文
In the study of biology and chemistry, the concept of a diffusion gradient plays a crucial role in understanding how substances move within different environments. A diffusion gradient, defined as the difference in concentration of a substance between two regions, drives the process of diffusion. This natural phenomenon occurs when molecules spread from an area of high concentration to an area of low concentration, seeking to achieve equilibrium. The importance of the diffusion gradient can be observed in various biological processes, such as respiration and nutrient absorption.For instance, in the human body, oxygen is transported from the lungs into the bloodstream. Here, a diffusion gradient is established because the concentration of oxygen in the alveoli (the air sacs in the lungs) is higher than that in the blood. Consequently, oxygen diffuses across the alveolar membrane into the blood, where it is needed for cellular respiration. This process exemplifies how a diffusion gradient facilitates the essential exchange of gases required for life.Moreover, the diffusion gradient is not limited to gases; it also applies to solutes in liquids. For example, when salt is added to water, it dissolves and creates a diffusion gradient. The concentration of salt is higher near the point of addition and gradually decreases as it spreads throughout the water. This movement continues until the salt is evenly distributed, demonstrating how a diffusion gradient leads to the equalization of concentrations in a solution.The significance of the diffusion gradient extends beyond biological systems. In environmental science, it helps explain how pollutants disperse in air and water. When a pollutant is released into a river, for instance, it creates a diffusion gradient that causes the pollutant to spread downstream. Understanding this concept is vital for developing strategies to mitigate pollution and protect ecosystems.In agriculture, the diffusion gradient has practical applications as well. Farmers often utilize fertilizers to enhance crop growth. When applied to soil, the nutrients create a diffusion gradient that allows them to move from areas of high concentration (where the fertilizer is applied) to areas of lower concentration in the plant roots. This movement is essential for the uptake of nutrients necessary for plant health and growth.To summarize, the diffusion gradient is a fundamental concept that underlies many natural processes. Whether in biological systems, environmental science, or agriculture, understanding how a diffusion gradient operates can provide insights into the mechanisms of movement and distribution of substances. As we continue to explore the intricacies of our world, the role of the diffusion gradient remains a key element in both scientific research and practical applications. By grasping this concept, we can better appreciate the interconnectedness of life and the environment, ultimately leading to more informed decisions regarding health, sustainability, and conservation efforts.
在生物学和化学的研究中,扩散梯度的概念在理解物质如何在不同环境中移动方面起着至关重要的作用。扩散梯度被定义为两个区域之间某种物质浓度的差异,它驱动着扩散过程。这种自然现象发生在分子从高浓度区域向低浓度区域扩散,寻求达到平衡。扩散梯度的重要性可以在多种生物过程中观察到,例如呼吸和营养吸收。例如,在人体内,氧气是从肺部运输到血液中的。在这里,由于肺泡(肺中的气囊)中的氧气浓度高于血液中的浓度,因此形成了一个扩散梯度。因此,氧气通过肺泡膜扩散到血液中,供细胞呼吸所需。这一过程例证了如何通过扩散梯度促进生命所需的气体交换。此外,扩散梯度不仅限于气体,它也适用于液体中的溶质。例如,当盐被加入水中时,它会溶解并创建一个扩散梯度。盐的浓度在添加点附近较高,随着盐在水中扩散而逐渐降低。这种运动持续进行,直到盐均匀分布,展示了扩散梯度如何导致溶液中浓度的均匀化。扩散梯度的重要性超越了生物系统。在环境科学中,它有助于解释污染物如何在空气和水中扩散。当污染物被释放到河流中时,它会产生一个扩散梯度,导致污染物向下游扩散。理解这一概念对于制定减轻污染和保护生态系统的策略至关重要。在农业中,扩散梯度也具有实际应用。当农民施用肥料以促进作物生长时,施加到土壤中的营养物质会创建一个扩散梯度,使其从高浓度区域(施肥点)移动到植物根部的低浓度区域。这种运动对于植物健康和生长所需营养的吸收至关重要。总之,扩散梯度是一个基本概念,支撑着许多自然过程。无论是在生物系统、环境科学还是农业中,理解扩散梯度的运作方式都能提供对物质运动和分布机制的深入见解。随着我们继续探索世界的复杂性,扩散梯度的作用仍然是科学研究和实际应用中的关键元素。通过掌握这一概念,我们可以更好地欣赏生命与环境的相互联系,最终在健康、可持续性和保护工作方面做出更明智的决策。
相关单词