spherics

简明释义

[/ˈsfɛrɪks/][/ˈsfɛrɪks/]

n. 球面几何学;球面三角学;天电学;天电测定

英英释义

The branch of mathematics and physics that deals with the properties and relationships of spheres and spherical objects.

研究球体及球形物体的性质和关系的数学和物理学分支。

The study of spherical shapes and their applications in various fields such as astronomy, geography, and engineering.

对球形状及其在天文学、地理学和工程等各个领域应用的研究。

单词用法

spherics of the earth

地球的球面特征

spherics in mathematics

数学中的球面几何

spherics in physics

物理中的球面理论

spherics theory

球面理论

spherics calculations

球面计算

spherics models

球面模型

同义词

spherical geometry

球面几何

Spherical geometry is often used in navigation and astronomy.

球面几何常用于导航和天文学。

sphericity

球形特性

The sphericity of an object can affect its aerodynamic properties.

一个物体的球形特性可能会影响其空气动力学性能。

geodesy

大地测量学

Geodesy is essential for understanding the Earth's shape and size.

大地测量学对于理解地球的形状和大小至关重要。

反义词

flatness

平坦

The flatness of the surface made it easier to build.

表面的平坦性使得建筑变得更容易。

planarity

平面性

In geometry, planarity is an important concept when studying shapes.

在几何学中,平面性是研究形状时的重要概念。

例句

1.The mathematical models of the dynamic target and the tested apparatus are constructed with spherical trigonometry spherics.

运用球面三角学,建立了动态靶标与被测仪器间的数学模型;

2.The mathematical models of the dynamic target and the tested apparatus are constructed with spherical trigonometry spherics.

运用球面三角学,建立了动态靶标与被测仪器间的数学模型;

3.Architects often consider spherics when designing domed structures.

建筑师在设计圆顶结构时常常考虑球面学

4.The principles of spherics are applied in various fields, including astronomy and geology.

在天文学和地质学等多个领域应用了球面学的原理。

5.The study of spherics is essential for understanding celestial navigation.

球面学的研究对于理解天体导航至关重要。

6.Understanding spherics can improve our grasp of global weather patterns.

理解球面学可以提高我们对全球天气模式的掌握。

7.In physics, spherics helps us analyze the properties of spherical objects.

在物理学中,球面学帮助我们分析球形物体的性质。

作文

In the realm of science and mathematics, the term spherics refers to the study of spheres and their properties. It encompasses various aspects of geometry and physics, focusing on the shapes, sizes, and positions of spherical objects. Understanding spherics is crucial for numerous applications, including astronomy, engineering, and even computer graphics. The concept of a sphere is not just limited to a perfect geometric shape; it also applies to celestial bodies such as planets and stars, making spherics an essential field of study in astrophysics.One of the fundamental principles in spherics is the relationship between the surface area and volume of a sphere. The formula for the surface area of a sphere is given by 4πr², where r is the radius. This equation illustrates how the surface area increases with the square of the radius, demonstrating the unique properties of spherical shapes. Similarly, the volume of a sphere is calculated using the formula (4/3)πr³, which shows that volume increases with the cube of the radius. These formulas are not only theoretical but also have practical implications in fields such as materials science and architecture, where understanding the properties of spherical structures can lead to more efficient designs.In addition to geometry, spherics plays a significant role in navigation and cartography. The Earth is approximately a sphere, and understanding its curvature is vital for accurate map-making and navigation. Techniques such as spherical trigonometry are employed to calculate distances and angles on the surface of the Earth, allowing navigators to plot courses accurately. This application of spherics demonstrates how knowledge of spherical geometry is essential for real-world problem-solving.Moreover, the study of spherics extends into the realm of physics, particularly in understanding gravitational fields and orbits. The gravitational force between two spherical bodies, like the Earth and the Moon, can be analyzed using principles of spherics. The orbits of planets around the sun can also be described using spherical coordinates, illustrating how this field connects various scientific disciplines.In computer graphics, spherics is crucial for rendering three-dimensional objects. When creating realistic images of spheres, artists and programmers must understand the principles of lighting, shading, and perspective. By applying the laws of spherics, they can create lifelike representations of spherical objects, enhancing the visual experience in video games and simulations.In conclusion, spherics is a multifaceted field that integrates geometry, physics, navigation, and computer graphics. Its principles are fundamental to our understanding of the universe and play a vital role in various scientific and practical applications. Whether we are studying the orbits of celestial bodies or designing a new architectural marvel, the principles of spherics guide us in our quest for knowledge and innovation. As we continue to explore the complexities of our world and beyond, the study of spherics will undoubtedly remain a cornerstone of scientific inquiry, helping us to unravel the mysteries of the spherical shapes that surround us.

在科学和数学的领域中,术语spherics指的是对球体及其性质的研究。它涵盖了几何和物理的各个方面,专注于球形物体的形状、大小和位置。理解spherics对于许多应用至关重要,包括天文学、工程学甚至计算机图形学。球体的概念不仅仅局限于完美的几何形状;它还适用于诸如行星和恒星等天体,使得spherics成为天体物理学中的一个重要研究领域。spherics中的一个基本原理是球体的表面积与体积之间的关系。球体的表面积公式为4πr²,其中r是半径。这个方程说明了表面积如何随着半径的平方而增加,展示了球形物体的独特性质。类似地,球体的体积通过公式(4/3)πr³计算,这表明体积随着半径的立方而增加。这些公式不仅是理论上的,而且在材料科学和建筑学等领域具有实际意义,了解球形结构的性质可以导致更高效的设计。除了几何学,spherics在导航和制图中也发挥着重要作用。地球大致是一个球体,理解其曲率对于准确制图和导航至关重要。诸如球面三角法等技术被用来计算地球表面的距离和角度,使导航者能够准确绘制航线。对spherics的这种应用展示了球形几何知识在现实世界问题解决中的重要性。此外,spherics的研究还扩展到物理学领域,特别是在理解引力场和轨道方面。两个球形物体之间的引力,例如地球和月球,可以利用spherics的原理进行分析。行星围绕太阳的轨道也可以使用球坐标来描述,这说明了该领域如何连接各种科学学科。在计算机图形学中,spherics对于渲染三维物体至关重要。当创建球体的逼真图像时,艺术家和程序员必须理解光照、阴影和透视的原理。通过应用spherics的法则,他们可以创建栩栩如生的球形物体的表现,增强视频游戏和模拟中的视觉体验。总之,spherics是一个多方面的领域,整合了几何学、物理学、导航和计算机图形学。其原理是我们理解宇宙的基础,并在各种科学和实际应用中发挥着重要作用。无论我们是在研究天体的轨道,还是设计新的建筑奇迹,spherics的原理都指引着我们探索知识和创新的追求。当我们继续探索我们世界及其之外的复杂性时,spherics的研究无疑将继续成为科学探究的基石,帮助我们揭开围绕我们的球形物体的奥秘。