coherent scattering cross section
简明释义
相干散射截面
英英释义
例句
1.Researchers often calculate the coherent scattering cross section 相干散射截面 to predict how particles will behave in different environments.
研究人员经常计算相干散射截面 coherent scattering cross section 以预测粒子在不同环境中的行为。
2.In X-ray scattering studies, the coherent scattering cross section 相干散射截面 provides insights into atomic arrangements.
在X射线散射研究中,相干散射截面 coherent scattering cross section 提供了原子排列的见解。
3.The measurement of the coherent scattering cross section 相干散射截面 is crucial in understanding the interaction of photons with matter.
测量相干散射截面 coherent scattering cross section 对于理解光子与物质的相互作用至关重要。
4.In neutron scattering experiments, the coherent scattering cross section 相干散射截面 helps in determining the structure of materials.
在中子散射实验中,相干散射截面 coherent scattering cross section 有助于确定材料的结构。
5.The coherent scattering cross section 相干散射截面 can vary significantly depending on the material's composition.
根据材料的成分,相干散射截面 coherent scattering cross section 可能会有显著变化。
作文
In the field of nuclear physics and materials science, understanding the interactions between particles and matter is crucial. One important concept that emerges in this context is the coherent scattering cross section, which refers to the effective area that quantifies the likelihood of coherent scattering events occurring when a beam of particles interacts with a target. Coherent scattering occurs when the incoming particles maintain their phase relationship after scattering, resulting in constructive interference. This phenomenon is particularly significant in the study of wave-like properties of particles, such as neutrons or X-rays, as it provides insights into the structure and dynamics of materials at the atomic level.The coherent scattering cross section is typically represented by the symbol 'σc' and is measured in units of area, commonly barns (1 barn = 10^-28 m²). It is essential for researchers to determine this cross section to understand how particles scatter off different materials, which can reveal information about the atomic arrangement and electronic properties of the target. For example, in neutron scattering experiments, the coherent scattering cross section helps scientists to analyze the positions of atoms in a crystal lattice, leading to a better understanding of the material's properties.Moreover, the coherent scattering cross section can vary significantly depending on the type of particle and the material being studied. Different nuclei have different scattering lengths, which directly influence the coherent scattering behavior. This variability allows researchers to choose specific isotopes or materials to enhance the visibility of certain features in experimental data. In practice, scientists often rely on databases that provide values for the coherent scattering cross section for various isotopes, facilitating the design of experiments tailored to their research goals.In addition to its practical applications, the concept of the coherent scattering cross section also plays a theoretical role in quantum mechanics and wave-particle duality. The ability of particles to exhibit both wave-like and particle-like behavior is foundational to modern physics. Coherent scattering serves as an excellent demonstration of these principles, illustrating how waves can interfere constructively or destructively based on their phase relationships. Understanding these interactions enriches our comprehension of fundamental physical laws and contributes to advancements in various scientific fields.In conclusion, the coherent scattering cross section is a pivotal concept in understanding how particles interact with matter. Its implications range from practical applications in materials science to deeper theoretical insights in quantum mechanics. As researchers continue to explore the nuances of particle behavior, the significance of the coherent scattering cross section will only grow, paving the way for new discoveries and innovations in science and technology.
在核物理和材料科学领域,理解粒子与物质之间的相互作用至关重要。一个重要的概念是相干散射截面,它指的是量化粒子束与靶材相互作用时发生相干散射事件的有效面积。相干散射发生在入射粒子在散射后保持其相位关系,从而导致建设性干涉。这一现象在粒子的波动性质研究中尤为重要,例如中子或X射线,因为它提供了关于材料在原子水平上的结构和动态的见解。相干散射截面通常用符号“σc”表示,单位为面积,通常为barn(1 barn = 10^-28 m²)。研究人员确定这一截面对于理解粒子如何散射不同材料至关重要,这可以揭示目标的原子排列和电子特性。例如,在中子散射实验中,相干散射截面帮助科学家分析晶格中原子的位置信息,从而更好地理解材料的性质。此外,相干散射截面可能因所研究粒子和材料的类型而显著变化。不同的核具有不同的散射长度,这直接影响相干散射行为。这种可变性使研究人员能够选择特定的同位素或材料,以增强实验数据中某些特征的可见性。在实践中,科学家们通常依赖于提供各种同位素的相干散射截面值的数据库,以便设计符合研究目标的实验。除了其实际应用外,相干散射截面的概念在量子力学和波粒二象性中也发挥着理论作用。粒子表现出波动性和粒子性行为的能力是现代物理学的基础。相干散射是这些原理的优秀示范,说明波动如何根据其相位关系进行建设性或破坏性干涉。理解这些相互作用丰富了我们对基本物理法则的理解,并有助于各个科学领域的进步。总之,相干散射截面是理解粒子与物质相互作用的关键概念。其影响范围从材料科学中的实际应用到量子力学中的更深层次理论见解。随着研究人员继续探索粒子行为的细微差别,相干散射截面的重要性只会增加,为科学和技术的新发现和创新铺平道路。
相关单词