ionizing collision

简明释义

电离碰撞

英英释义

An ionizing collision refers to an interaction between particles, such as atoms or molecules, that results in the removal of one or more electrons from an atom or molecule, thereby creating ions.

电离碰撞是指粒子(如原子或分子)之间的相互作用,导致一个或多个电子从原子或分子中移除,从而形成离子。

例句

1.The study of ionizing collisions 电离碰撞 is crucial for understanding radiation effects in materials.

研究ionizing collisions 电离碰撞 对于理解材料中的辐射效应至关重要。

2.In particle physics, an ionizing collision 电离碰撞 occurs when a high-energy particle strikes an atom, knocking out electrons.

在粒子物理学中,ionizing collision 电离碰撞 发生在高能粒子撞击原子时,导致电子被击出。

3.Understanding the mechanics of ionizing collisions 电离碰撞 helps improve radiation therapy in cancer treatment.

理解ionizing collisions 电离碰撞 的机制有助于改善癌症治疗中的放射治疗。

4.Medical imaging techniques often rely on ionizing collisions 电离碰撞 to produce detailed images of the body.

医学成像技术通常依赖于ionizing collisions 电离碰撞 来产生身体的详细图像。

5.In nuclear reactions, ionizing collisions 电离碰撞 can lead to the formation of new elements.

在核反应中,ionizing collisions 电离碰撞 可以导致新元素的形成。

作文

In the realm of physics, particularly in the study of atomic and subatomic particles, the concept of ionizing collision plays a crucial role. An ionizing collision refers to an interaction between a high-energy particle and an atom or molecule that results in the ejection of one or more electrons from the atom, thus creating ions. This process is fundamental to understanding various phenomena, including radiation, chemical reactions, and even the mechanisms behind certain types of technology such as smoke detectors and particle accelerators.To comprehend the significance of ionizing collision, we must first delve into the structure of an atom. Atoms are composed of a nucleus, which contains protons and neutrons, surrounded by a cloud of electrons. The electrons are held in their orbits by electromagnetic forces. However, when a high-energy particle, such as an alpha particle, beta particle, or photon, collides with an atom, it can impart enough energy to overcome the attractive forces holding the electrons in place. This energy transfer leads to the phenomenon of ionization.Ionization is a key process in many natural and artificial environments. For instance, in the atmosphere, cosmic rays—high-energy particles from space—collide with air molecules, resulting in ionizing collisions that can produce secondary particles and even contribute to the formation of ozone. In medical applications, ionizing collisions are harnessed in radiation therapy, where targeted radiation is used to destroy cancerous cells while minimizing damage to surrounding healthy tissue.Moreover, ionizing collisions have significant implications in the field of nuclear physics. When nuclei undergo fission or fusion, they release a tremendous amount of energy, often accompanied by particles that can cause further ionizing collisions with surrounding matter. This chain reaction is essential for the functioning of nuclear reactors and for understanding the processes that power stars, including our sun.In everyday life, we encounter technologies that utilize the principles of ionizing collision. For example, smoke detectors often employ americium-241, a radioactive isotope that emits alpha particles. When these particles collide with air molecules, they create ions that facilitate the flow of electricity. If smoke enters the detector, it disrupts this ion flow, triggering the alarm. This application highlights the practical importance of ionizing collision in ensuring safety in our homes.Despite its many applications, ionizing collision also poses risks, particularly in terms of health. Exposure to ionizing radiation can lead to various health issues, including cancer, due to the potential for damaging DNA within cells. This underscores the need for strict safety regulations in industries that work with radioactive materials and radiation-producing devices.In conclusion, the phenomenon of ionizing collision is a fundamental aspect of both natural and technological processes. From the creation of ions in the atmosphere to the applications in medicine and safety devices, understanding ionizing collision is essential for advancing our knowledge in physics and improving our quality of life. As we continue to explore the intricacies of atomic interactions, the implications of ionizing collision will undoubtedly remain a vital area of study and innovation.

在物理学领域,特别是在原子和亚原子粒子的研究中,电离碰撞的概念起着至关重要的作用。电离碰撞是指高能粒子与原子或分子之间的相互作用,导致一个或多个电子从原子中被弹出,从而形成离子。这个过程对于理解各种现象至关重要,包括辐射、化学反应,甚至某些类型技术的机制,如烟雾探测器和粒子加速器。要理解电离碰撞的重要性,我们必须首先深入了解原子的结构。原子由一个包含质子和中子的原子核组成,周围环绕着一云电子。电子通过电磁力被束缚在其轨道中。然而,当一个高能粒子,如α粒子、β粒子或光子,与原子碰撞时,它可以传递足够的能量来克服束缚电子的吸引力。这种能量转移导致了电离现象。电离是许多自然和人工环境中的关键过程。例如,在大气中,宇宙射线——来自太空的高能粒子——与空气分子发生电离碰撞,产生次级粒子,甚至有助于臭氧的形成。在医学应用中,电离碰撞在放射治疗中被利用,其中靶向辐射用于摧毁癌细胞,同时尽量减少对周围健康组织的损害。此外,电离碰撞在核物理领域具有重要意义。当原子核经历裂变或聚变时,它们释放出大量能量,通常伴随着粒子,这些粒子可以导致周围物质发生进一步的电离碰撞。这种链式反应对于核反应堆的运作和理解为我们提供能量的恒星(包括我们的太阳)所需的过程至关重要。在日常生活中,我们遇到的技术利用了电离碰撞的原理。例如,烟雾探测器通常使用铈-241,这是一种放射性同位素,发出α粒子。当这些粒子与空气分子碰撞时,它们会产生离子,从而促进电流的流动。如果烟雾进入探测器,它会干扰这种离子流,从而触发警报。这一应用突显了电离碰撞在确保我们家庭安全中的实际重要性。尽管有许多应用,电离碰撞也存在风险,特别是在健康方面。暴露于电离辐射可能导致各种健康问题,包括癌症,因为它可能对细胞内的DNA造成损害。这突显了在处理放射性材料和产生辐射的设备的行业中需要严格的安全法规。总之,电离碰撞现象是自然和技术过程的基本方面。从大气中离子的产生到医学和安全设备的应用,理解电离碰撞对于推动我们在物理学领域的知识和改善我们的生活质量至关重要。随着我们继续探索原子相互作用的复杂性,电离碰撞的影响无疑将继续成为研究和创新的重要领域。

相关单词

ionizing

ionizing详解:怎么读、什么意思、用法

collision

collision详解:怎么读、什么意思、用法