ballistic heterostructure

简明释义

弹道异质结构

英英释义

A ballistic heterostructure refers to a material system composed of different semiconductor layers, where charge carriers can travel through the layers without scattering, maintaining their energy and momentum.

弹道异质结构是指由不同半导体层组成的材料系统,其中电荷载流子可以在层间无散射地移动,保持其能量和动量。

例句

1.The potential of ballistic heterostructure 弹道异质结构 in enhancing photovoltaic efficiency is being actively explored.

正在积极探索ballistic heterostructure弹道异质结构在提高光伏效率方面的潜力。

2.In their latest paper, scientists discussed the advantages of using ballistic heterostructure 弹道异质结构 in quantum computing applications.

在他们的最新论文中,科学家们讨论了在量子计算应用中使用ballistic heterostructure弹道异质结构的优势。

3.The fabrication of ballistic heterostructure 弹道异质结构 requires precise control over material interfaces.

制造ballistic heterostructure弹道异质结构需要对材料界面进行精确控制。

4.Recent advancements in ballistic heterostructure 弹道异质结构 technologies have opened new pathways for high-speed electronics.

近期在ballistic heterostructure弹道异质结构技术方面的进展为高速电子设备开辟了新途径。

5.The research team developed a new type of ballistic heterostructure 弹道异质结构 that significantly improved electron mobility.

研究团队开发了一种新型的ballistic heterostructure弹道异质结构,显著提高了电子迁移率。

作文

In the realm of modern physics and materials science, the concept of a ballistic heterostructure has emerged as a pivotal area of research. A ballistic heterostructure refers to a layered material system where charge carriers, such as electrons, can travel through different layers without scattering, thus maintaining their momentum and energy. This phenomenon is crucial for the development of high-performance electronic devices, as it allows for faster signal transmission and reduced energy loss. The term 'ballistic' implies that the movement of these charge carriers is similar to that of a projectile, traveling in a straight line over a certain distance without being deflected by impurities or lattice vibrations within the material.The significance of ballistic heterostructures can be understood through their applications in various fields. For instance, in the fabrication of transistors, the ability of electrons to move ballistically can lead to devices that operate at higher speeds and with greater efficiency. Traditional semiconductor devices often suffer from scattering due to defects and thermal vibrations, which limit their performance. However, by utilizing ballistic heterostructures, engineers can design transistors that leverage the ballistic transport of charge carriers, resulting in faster switching times and lower power consumption.Moreover, ballistic heterostructures play a crucial role in quantum computing. In quantum dots, which are tiny semiconductor particles, the confinement of electrons allows for unique quantum states that can be manipulated for information processing. The ballistic nature of charge carriers in these structures enables coherent transport, which is essential for the functioning of qubits – the basic units of quantum information. As researchers continue to explore the potential of ballistic heterostructures, they are paving the way for breakthroughs in quantum technologies.The study of ballistic heterostructures also extends to the field of optoelectronics, where light emission and detection are critical. In devices like lasers and photodetectors, the efficient transport of charge carriers can enhance performance significantly. By engineering ballistic heterostructures with specific material combinations, scientists can optimize the interaction between electrons and photons, leading to improved light emission characteristics and sensitivity in detection applications.Despite the promising advantages of ballistic heterostructures, challenges remain in their fabrication and integration into existing technologies. Achieving the precise control over layer thickness and composition is essential to maximize the ballistic transport effects. Advanced techniques such as molecular beam epitaxy and atomic layer deposition are often employed to create these structures with atomic-level precision. Furthermore, understanding the underlying physics governing the behavior of charge carriers in these complex systems is an ongoing area of research.In conclusion, the exploration of ballistic heterostructures represents a fascinating intersection of physics, materials science, and engineering. Their ability to facilitate ballistic transport of charge carriers holds immense potential for revolutionizing electronic, quantum, and optoelectronic devices. As research continues to advance, we can expect to see innovative applications that harness the unique properties of ballistic heterostructures, ultimately contributing to the evolution of technology in the 21st century.

在现代物理学和材料科学的领域中,‘ballistic heterostructure’这一概念已成为研究的关键领域。‘ballistic heterostructure’指的是一种分层材料系统,其中电荷载流子(如电子)可以穿过不同的层而不发生散射,从而保持其动量和能量。这一现象对于高性能电子设备的发展至关重要,因为它允许更快的信号传输和减少能量损失。术语“ballistic”意味着这些电荷载流子的运动类似于弹丸,在一定距离内沿直线移动,而不被材料中的杂质或晶格振动偏转。理解‘ballistic heterostructures’的重要性可以通过它们在各个领域的应用来实现。例如,在晶体管的制造中,电子的弹道运动能力可以导致以更高速度和更大效率运行的设备。传统半导体设备通常由于缺陷和热振动而遭受散射,这限制了它们的性能。然而,通过利用‘ballistic heterostructures’,工程师可以设计出利用电荷载流子的弹道传输的晶体管,从而实现更快的开关时间和更低的功耗。此外,‘ballistic heterostructures’在量子计算中也发挥着关键作用。在量子点中,量子点是微小的半导体颗粒,电子的限制使得可以操控独特的量子态用于信息处理。这些结构中电荷载流子的弹道特性使得相干传输成为可能,这对量子信息的基本单位——量子比特(qubit)的功能至关重要。随着研究人员继续探索‘ballistic heterostructures’的潜力,他们正在为量子技术的突破铺平道路。‘ballistic heterostructures’的研究还扩展到光电电子学领域,在该领域中,光的发射和检测至关重要。在激光器和光电探测器等设备中,电荷载流子的有效传输可以显著增强性能。通过工程化具有特定材料组合的‘ballistic heterostructures’,科学家可以优化电子与光子之间的相互作用,从而提高光发射特性和检测应用的灵敏度。尽管‘ballistic heterostructures’具有显著的优势,但在其制造和集成到现有技术中仍面临挑战。实现对层厚度和组成的精确控制对于最大化弹道传输效应至关重要。分子束外延和原子层沉积等先进技术通常被用来以原子级精度创建这些结构。此外,理解支配这些复杂系统中电荷载流子行为的基础物理学仍然是一个持续的研究领域。总之,‘ballistic heterostructures’的探索代表了物理学、材料科学和工程学的迷人交汇点。它们促进电荷载流子的弹道传输的能力对革命性电子、量子和光电设备具有巨大的潜力。随着研究的不断推进,我们可以期待看到创新应用,利用‘ballistic heterostructures’的独特特性,最终为21世纪科技的演变做出贡献。

相关单词

ballistic

ballistic详解:怎么读、什么意思、用法