avalanche breakdown voltage
简明释义
雪崩哗电压
英英释义
例句
1.When designing a power supply, engineers must consider the avalanche breakdown voltage to prevent device failure.
在设计电源时,工程师必须考虑 雪崩击穿电压 以防止设备故障。
2.In high-voltage applications, knowing the avalanche breakdown voltage is essential for reliability.
在高压应用中,了解 雪崩击穿电压 对于可靠性至关重要。
3.The avalanche breakdown voltage can vary significantly between different materials.
雪崩击穿电压 在不同材料之间可能会有显著差异。
4.The avalanche breakdown voltage is critical for ensuring the safe operation of semiconductor devices.
雪崩击穿电压 对于确保半导体设备的安全运行至关重要。
5.A diode's avalanche breakdown voltage determines its maximum reverse bias voltage.
二极管的 雪崩击穿电压 决定了其最大反向偏置电压。
作文
The concept of avalanche breakdown voltage is crucial in the field of semiconductor physics and electronic engineering. It refers to the minimum reverse voltage at which a diode or a similar semiconductor device begins to conduct significantly due to an avalanche effect. This phenomenon occurs when the applied voltage exceeds a certain threshold, causing carriers (electrons and holes) to gain enough energy to create additional electron-hole pairs through impact ionization. Understanding avalanche breakdown voltage is essential for designing reliable electronic components that can withstand high voltages without failing. In practical applications, the avalanche breakdown voltage is an important parameter for devices such as Zener diodes and photodiodes. For instance, Zener diodes are specifically designed to operate in the breakdown region, providing a stable reference voltage for various electronic circuits. The avalanche breakdown voltage allows these diodes to regulate voltage effectively, making them invaluable in power supply circuits where voltage stabilization is critical. Moreover, understanding the avalanche breakdown voltage helps engineers predict the behavior of semiconductor devices under different conditions. When designing circuits, it is vital to ensure that the applied reverse voltage does not exceed the breakdown voltage unless the device is intended to operate in that region. Exceeding the avalanche breakdown voltage unintentionally can lead to permanent damage to the semiconductor device, resulting in circuit failure. The temperature also plays a significant role in determining the avalanche breakdown voltage. As temperature increases, the breakdown voltage typically decreases, which can affect the performance of electronic devices in high-temperature environments. Engineers must account for this factor when designing circuits for applications in extreme conditions, ensuring that the devices will function reliably without entering the breakdown region unintentionally. In summary, the avalanche breakdown voltage is a fundamental concept in semiconductor technology, influencing the design and functionality of various electronic components. A thorough understanding of this parameter allows engineers to create more robust and efficient circuits, ensuring that devices perform reliably under varying conditions. As the demand for advanced electronic systems continues to grow, mastering the implications of avalanche breakdown voltage will become increasingly important in the field of electronics. In conclusion, the significance of avalanche breakdown voltage extends beyond theoretical knowledge; it has practical implications for the development of safe and effective electronic devices. By grasping this concept, engineers and designers can innovate and enhance technology while minimizing risks associated with semiconductor failures. This understanding not only contributes to the advancement of electronic engineering but also supports the broader goal of creating sustainable and reliable technology for future generations.
‘雪崩击穿电压’的概念在半导体物理和电子工程领域至关重要。它指的是二极管或类似半导体器件开始因雪崩效应而显著导电的最小反向电压。当施加的电压超过某一阈值时,载流子(电子和空穴)获得足够的能量,通过冲击电离产生额外的电子-空穴对,从而发生这种现象。理解‘雪崩击穿电压’对设计能够承受高电压而不失效的可靠电子元件至关重要。 在实际应用中,‘雪崩击穿电压’是齐纳二极管和光电二极管等设备的重要参数。例如,齐纳二极管专门设计用于在击穿区域工作,为各种电子电路提供稳定的参考电压。‘雪崩击穿电压’使这些二极管能够有效地调节电压,使其在对电压稳定性至关重要的电源电路中不可或缺。 此外,理解‘雪崩击穿电压’有助于工程师预测半导体器件在不同条件下的行为。在设计电路时,确保施加的反向电压不会超过击穿电压是至关重要的,除非该器件旨在在该区域工作。无意中超过‘雪崩击穿电压’可能导致半导体器件的永久损坏,从而导致电路失效。 温度也在确定‘雪崩击穿电压’方面发挥着重要作用。随着温度的升高,击穿电压通常会降低,这可能影响高温环境中电子设备的性能。工程师在为极端条件下的应用设计电路时,必须考虑这一因素,确保设备在未进入击穿区域的情况下可靠运行。 总之,‘雪崩击穿电压’是半导体技术中的基本概念,影响着各种电子元件的设计和功能。透彻理解这一参数使工程师能够创建更强大和高效的电路,确保设备在不同条件下可靠运行。随着对先进电子系统需求的不断增长,掌握‘雪崩击穿电压’的影响将在电子领域变得越来越重要。 最后,‘雪崩击穿电压’的重要性超越了理论知识;它对安全和有效的电子设备开发具有实际意义。通过掌握这一概念,工程师和设计师可以创新和提升技术,同时将与半导体故障相关的风险降到最低。这种理解不仅有助于电子工程的发展,也支持了创造可持续和可靠技术以造福未来几代人的更广泛目标。
相关单词