strouhal number
简明释义
斯特劳哈尔数
英英释义
例句
1.Engineers often calculate the strouhal number 斯特劳哈尔数 to optimize the design of bridges to reduce vibration.
工程师通常计算 斯特劳哈尔数 strouhal number 以优化桥梁设计,减少振动。
2.The strouhal number 斯特劳哈尔数 is crucial in understanding the vortex shedding from cylindrical objects.
在理解圆柱物体的涡脱落时,斯特劳哈尔数 strouhal number 是至关重要的。
3.The relationship between the strouhal number 斯特劳哈尔数 and Reynolds number is essential in fluid dynamics.
在流体动力学中,斯特劳哈尔数 strouhal number 与雷诺数之间的关系至关重要。
4.A low strouhal number 斯特劳哈尔数 indicates a stable flow regime, while a high value suggests turbulence.
低 斯特劳哈尔数 strouhal number 表示流动状态稳定,而高值则暗示湍流。
5.In aerodynamics, the strouhal number 斯特劳哈尔数 helps predict the frequency of oscillations in airflow around wings.
在空气动力学中,斯特劳哈尔数 strouhal number 有助于预测气流在机翼周围的振荡频率。
作文
The Strouhal number is a dimensionless quantity that describes the oscillating flow mechanisms in various fluid dynamics scenarios. It is particularly significant in the study of vortex shedding, which occurs when fluid flows past a body and creates alternating low-pressure vortices behind it. Understanding the Strouhal number is essential for engineers and scientists as it helps predict the behavior of these vortices, which can have critical implications in many fields such as aerodynamics, hydrodynamics, and even biomechanics.In essence, the Strouhal number is defined as the ratio of inertial forces to the elastic restoring forces acting on a fluid element. Mathematically, it is expressed as St = fL/U, where St represents the Strouhal number, f is the frequency of vortex shedding, L is a characteristic length (such as the diameter of a cylinder), and U is the flow velocity. This relationship illustrates how the frequency of oscillation is influenced by both the size of the object and the speed of the fluid.One of the most common applications of the Strouhal number is in the design of structures exposed to wind, such as bridges and tall buildings. Engineers must consider the possibility of resonance, where the natural frequency of oscillation of a structure matches the frequency of the wind-induced vortices. By calculating the Strouhal number, they can determine safe design parameters to mitigate the risk of structural failure due to excessive vibrations.In aquatic environments, the Strouhal number plays a crucial role in understanding fish locomotion. Fish utilize a unique swimming technique that involves generating thrust through their body and tail movements. The Strouhal number in fish swimming is typically between 0.2 and 0.4, which indicates an optimal range for efficient propulsion. This knowledge not only enhances our understanding of biological systems but also informs the design of underwater vehicles and robotics that mimic these natural movements.Furthermore, the Strouhal number is relevant in the field of aerodynamics, particularly in the flight of birds and insects. The flapping motion of their wings creates a complex interaction with the surrounding air, leading to the generation of lift. By analyzing the Strouhal number associated with different species, researchers can gain insights into the efficiency of various flying techniques and apply this knowledge to the development of more efficient aircraft designs.In summary, the Strouhal number is a vital concept in fluid dynamics that provides insight into the behavior of oscillating flows around objects. Its applications span across multiple disciplines, including engineering, biology, and physics. By understanding the principles behind the Strouhal number, we can enhance our ability to design safer structures, improve the efficiency of aquatic and aerial locomotion, and ultimately deepen our comprehension of the complex interactions between fluids and solid bodies. As research continues to evolve, the Strouhal number will remain a fundamental parameter in the study of fluid dynamics and its practical applications.
斯特劳哈尔数(Strouhal number)是一个无量纲量,描述了各种流体动力学场景中的振荡流动机制。它在涡流脱落的研究中尤为重要,当流体流过物体并在其后面形成交替的低压涡旋时,就会发生这种现象。理解Strouhal number对工程师和科学家至关重要,因为它有助于预测这些涡旋的行为,这在空气动力学、水动力学甚至生物力学等多个领域都可能产生关键影响。从本质上讲,Strouhal number被定义为作用于流体元素的惯性力与弹性恢复力的比率。从数学上讲,它表示为St = fL/U,其中St代表Strouhal number,f是涡流脱落的频率,L是特征长度(如圆柱体的直径),U是流动速度。这个关系说明了振荡频率如何受到物体大小和流体速度的影响。Strouhal number的一个常见应用是在设计暴露于风中的结构,例如桥梁和高楼大厦。工程师必须考虑共振的可能性,即结构的固有振荡频率与风引起的涡旋频率匹配。通过计算Strouhal number,他们可以确定安全设计参数,以减轻由于过度振动导致结构失效的风险。在水生环境中,Strouhal number在理解鱼类运动方面发挥着关键作用。鱼类利用独特的游泳技术,通过身体和尾巴的运动产生推力。鱼类游泳中的Strouhal number通常在0.2到0.4之间,这表明这是高效推进的最佳范围。这一知识不仅增强了我们对生物系统的理解,还为模仿这些自然运动的水下车辆和机器人设计提供了信息。此外,Strouhal number在空气动力学领域也相关,尤其是在鸟类和昆虫的飞行中。它们翅膀的拍打运动与周围空气之间产生复杂的相互作用,从而产生升力。通过分析与不同物种相关的Strouhal number,研究人员可以深入了解各种飞行技术的效率,并将这一知识应用于开发更高效的飞机设计。总之,Strouhal number是流体动力学中的一个重要概念,为我们提供了关于物体周围振荡流动行为的洞察。它的应用跨越多个学科,包括工程、生物学和物理学。通过理解Strouhal number背后的原理,我们可以提高设计更安全的结构的能力,改善水生和空中运动的效率,并最终加深我们对流体与固体之间复杂相互作用的理解。随着研究的不断发展,Strouhal number将始终是流体动力学及其实际应用研究中的基本参数。