stirling cycle

简明释义

斯特林循环

英英释义

A Stirling cycle is a thermodynamic cycle that describes the operation of a Stirling engine, which is an external combustion engine that operates by cyclic compression and expansion of air or other gas at different temperature levels.

斯特林循环是一个热力学循环,描述了斯特林发动机的工作原理,这是一种外燃机,通过在不同温度水平下对空气或其他气体进行周期性的压缩和膨胀来运作。

例句

1.In theory, the stirling cycle 斯特林循环 can achieve higher efficiencies than the Carnot cycle.

理论上,stirling cycle 斯特林循环 的效率可以超过卡诺循环。

2.The efficiency of the stirling cycle 斯特林循环 makes it a popular choice for renewable energy applications.

由于其高效性,stirling cycle 斯特林循环 成为可再生能源应用的热门选择。

3.One advantage of the stirling cycle 斯特林循环 is its ability to utilize low-temperature heat sources.

stirling cycle 斯特林循环 的一个优点是能够利用低温热源。

4.Many researchers are exploring the potential of the stirling cycle 斯特林循环 in solar power generation.

许多研究人员正在探索 stirling cycle 斯特林循环 在太阳能发电中的潜力。

5.The design of engines based on the stirling cycle 斯特林循环 is often simpler than that of traditional internal combustion engines.

基于 stirling cycle 斯特林循环 的发动机设计通常比传统内燃机更简单。

作文

The Stirling cycle is a thermodynamic cycle that describes the operation of a Stirling engine, which is known for its efficiency and versatility in converting heat energy into mechanical work. The cycle consists of four main processes: isothermal expansion, constant volume heat addition, isothermal compression, and constant volume heat rejection. Each of these processes plays a crucial role in the overall efficiency and functionality of the engine.In the first stage, isothermal expansion, the working gas inside the engine is heated at a constant temperature. During this process, the gas expands, doing work on the piston. This is one of the key features of the Stirling cycle: it allows for efficient energy transfer by maintaining a constant temperature during expansion. As the gas absorbs heat from an external source, such as burning fuel or solar energy, it pushes the piston outward, generating mechanical power.The second stage involves constant volume heat addition. In this phase, the gas reaches a point where it can no longer expand and is held at a constant volume. Here, additional heat is added to the gas, increasing its internal energy and pressure without changing its volume. This process is essential for preparing the gas for the next stage of the Stirling cycle, where it will be compressed.Next comes the isothermal compression phase, where the gas is cooled at a constant temperature. As the gas is compressed, it loses energy, and the piston moves inward. This cooling process is critical because it allows the engine to maintain efficiency. The Stirling cycle is unique in that it can utilize low-grade heat sources, making it an attractive option for various applications, including renewable energy systems.Finally, the last stage of the Stirling cycle is constant volume heat rejection. In this stage, the gas is held at a constant volume while it releases heat to the surroundings. The pressure of the gas decreases as it cools down, allowing the piston to return to its original position. This completes the cycle, and the engine is ready to begin the process again.One of the most significant advantages of the Stirling cycle is its ability to operate with different heat sources. Unlike traditional internal combustion engines that require specific fuels, Stirling engines can run on any heat source, including biomass, solar, and even waste heat from industrial processes. This flexibility makes the Stirling cycle a promising technology for sustainable energy solutions.Moreover, the Stirling cycle is known for its quiet operation and low emissions, contributing to environmental sustainability. As the world increasingly shifts towards greener technologies, understanding and implementing the Stirling cycle could play a vital role in reducing our carbon footprint.In conclusion, the Stirling cycle represents a remarkable advancement in thermodynamic principles, showcasing how heat energy can be efficiently converted into mechanical work. Its unique processes not only enhance the performance of Stirling engines but also open doors for innovative applications in renewable energy. As we continue to explore sustainable energy solutions, the Stirling cycle remains a critical area of study and development, promising a cleaner and more efficient future.

斯特林循环是一个热力学循环,描述了斯特林发动机的工作原理,该发动机以其高效性和多功能性而闻名,能够将热能转化为机械功。该循环由四个主要过程组成:等温膨胀、恒定体积加热、等温压缩和恒定体积冷却。每个过程在发动机的整体效率和功能中都起着至关重要的作用。在第一阶段等温膨胀中,发动机内部的工作气体在恒定温度下被加热。在这个过程中,气体膨胀,对活塞做功。这是斯特林循环的一个关键特征:它通过在膨胀过程中保持恒定的温度来实现高效的能量转移。当气体从外部热源(如燃烧燃料或太阳能)吸收热量时,它推动活塞向外移动,产生机械动力。第二阶段涉及恒定体积加热。在这一阶段,气体达到无法再膨胀的点,并被保持在恒定体积。在此过程中,额外的热量被加入到气体中,增加其内部能量和压力,而不改变其体积。这个过程对于为下一阶段的斯特林循环做准备至关重要,在这一阶段气体将被压缩。接下来是等温压缩阶段,此时气体在恒定温度下被冷却。当气体被压缩时,它失去能量,活塞向内移动。这个冷却过程是关键,因为它使得发动机能够保持效率。斯特林循环的独特之处在于它可以利用低品位热源,使其成为各种应用的有吸引力的选择,包括可再生能源系统。最后,斯特林循环的最后一个阶段是恒定体积冷却。在这一阶段,气体在恒定体积下释放热量到周围环境。随着气体冷却,压力降低,允许活塞返回到原始位置。这完成了循环,发动机准备再次开始这一过程。斯特林循环最显著的优点之一是它能够与不同的热源一起运行。与需要特定燃料的传统内燃机不同,斯特林发动机可以使用任何热源,包括生物质、太阳能甚至工业过程中的废热。这种灵活性使得斯特林循环成为可持续能源解决方案的有前途的技术。此外,斯特林循环以其安静的操作和低排放而闻名,有助于环境可持续性。随着世界日益转向更绿色的技术,理解和实施斯特林循环可能在减少我们的碳足迹方面发挥重要作用。总之,斯特林循环代表了热力学原理的显著进步,展示了如何有效地将热能转化为机械功。其独特的过程不仅增强了斯特林发动机的性能,还为可再生能源的创新应用开辟了大门。随着我们继续探索可持续能源解决方案,斯特林循环仍然是一个关键的研究和发展领域,承诺提供一个更清洁、更高效的未来。

相关单词

cycle

cycle详解:怎么读、什么意思、用法