rotational angle

简明释义

转动角

英英释义

The rotational angle is the measure of the angle through which a point or line has been rotated in a specified sense about a specified axis.

旋转角是指一个点或线围绕指定轴以指定方向旋转所经过的角度的度量。

例句

1.The rotational angle (旋转角度) of the wheel affects the speed of the vehicle significantly.

车轮的rotational angle (旋转角度) 会显著影响车辆的速度。

2.The robot arm can adjust its position by changing the rotational angle (旋转角度) to reach different objects.

机器人手臂可以通过改变其rotational angle (旋转角度) 来调整位置以达到不同的物体。

3.In physics, we often calculate the rotational angle (旋转角度) to determine the motion of spinning objects.

在物理学中,我们经常计算rotational angle (旋转角度) 来确定旋转物体的运动。

4.The designer calculated the rotational angle (旋转角度) for the gears to ensure they mesh properly.

设计师计算了齿轮的rotational angle (旋转角度) 以确保它们正确啮合。

5.To set the camera angle, you need to adjust the rotational angle (旋转角度) precisely.

要设置相机角度,您需要精确调整rotational angle (旋转角度)。

作文

The concept of a rotational angle is fundamental in various fields of science and engineering. It refers to the angle through which a point or line has been rotated in a specified sense about a specified axis. Understanding this concept is crucial for anyone working with rotational motion, whether in physics, robotics, or even computer graphics. The rotational angle helps describe how much an object has turned around a pivot point, which can be expressed in degrees or radians.In physics, the rotational angle plays a significant role in understanding circular motion. For example, when a wheel rotates, the distance traveled by a point on its edge is directly related to the rotational angle it has covered. If we know the radius of the wheel and the rotational angle in radians, we can calculate the arc length using the formula: arc length = radius × rotational angle. This relationship illustrates how the rotational angle allows us to connect linear and angular measurements, which is essential in mechanics.In robotics, the rotational angle is crucial for controlling the movement of robotic arms. Each joint in a robotic arm can rotate to a specific rotational angle, which determines the position and orientation of the end effector. By programming the desired rotational angles for each joint, engineers can ensure that the robot performs tasks accurately. This precise control relies on understanding the rotational angle and its impact on the overall movement of the robot.Moreover, in computer graphics, the rotational angle is used to animate objects and create realistic movements. When rotating a 3D model, artists must specify the rotational angle around the axes (X, Y, Z) to achieve the desired orientation. This application of the rotational angle allows for the creation of dynamic scenes where objects can spin, tilt, or roll, enhancing the visual experience for viewers.Furthermore, the rotational angle is not limited to physical applications; it also has theoretical implications in mathematics. In trigonometry, the rotational angle is used to define sine, cosine, and tangent functions, which are vital for solving problems involving triangles and periodic functions. By understanding how the rotational angle relates to these functions, students can deepen their comprehension of mathematical concepts and their real-world applications.In conclusion, the rotational angle is a versatile concept that transcends multiple disciplines. Its relevance in physics, robotics, computer graphics, and mathematics highlights the interconnectedness of these fields. By mastering the rotational angle, individuals can enhance their problem-solving skills and apply this knowledge to various practical situations. Whether you are designing a robot, animating a character, or studying the motion of celestial bodies, understanding the rotational angle will undoubtedly enrich your learning experience and professional capabilities.

“旋转角”这一概念在科学和工程的多个领域中是基础性的。它指的是某一点或某条线围绕指定轴以特定方式旋转所形成的角度。理解这一概念对于任何从事旋转运动工作的人都是至关重要的,无论是在物理学、机器人技术,还是计算机图形学中。“旋转角”有助于描述物体围绕支点转动的程度,可以用度数或弧度来表示。在物理学中,“旋转角”在理解圆周运动时发挥着重要作用。例如,当一个轮子旋转时,边缘上某一点经过的距离与它所覆盖的“旋转角”直接相关。如果我们知道轮子的半径以及“旋转角”的弧度,就可以使用公式:弧长 = 半径 × “旋转角”来计算弧长。这一关系展示了“旋转角”如何使我们能够将线性测量与角度测量相连接,这在力学中是必不可少的。在机器人技术中,“旋转角”对于控制机器人手臂的运动至关重要。机器人手臂中的每个关节都可以旋转到特定的“旋转角”,这决定了末端执行器的位置和方向。通过编程每个关节所需的“旋转角”,工程师可以确保机器人准确地执行任务。这种精确控制依赖于对“旋转角”及其对机器人整体运动的影响的理解。此外,在计算机图形学中,“旋转角”用于动画对象并创建逼真的运动。当旋转一个三维模型时,艺术家必须指定围绕轴(X、Y、Z)的“旋转角”以实现所需的方向。“旋转角”的这一应用使得创建动态场景成为可能,让对象可以旋转、倾斜或滚动,从而增强观众的视觉体验。此外,“旋转角”不仅限于物理应用,它在数学中也具有理论意义。在三角学中,“旋转角”用于定义正弦、余弦和正切函数,这些函数对于解决涉及三角形和周期性函数的问题至关重要。通过理解“旋转角”与这些函数之间的关系,学生可以加深对数学概念及其实际应用的理解。总之,“旋转角”是一个多功能的概念,跨越多个学科。它在物理学、机器人技术、计算机图形学和数学中的相关性突显了这些领域之间的相互联系。通过掌握“旋转角”,个人可以提高解决问题的能力,并将这一知识应用于各种实际情况。无论您是在设计机器人、动画角色,还是研究天体的运动,理解“旋转角”无疑会丰富您的学习经验和职业能力。

相关单词

rotational

rotational详解:怎么读、什么意思、用法

angle

angle详解:怎么读、什么意思、用法