radius vector
简明释义
矢径
英英释义
例句
1.The radius vector (半径矢量) defines the distance and direction from the center of a circular path to the moving object.
在圆形路径中,半径矢量 (radius vector)定义了从圆心到运动物体的距离和方向。
2.In physics, the position of a particle can be described using a radius vector (半径矢量) from the origin.
在物理学中,粒子的位置可以用从原点出发的半径矢量 (radius vector)来描述。
3.To calculate the area swept by a satellite, we consider the radius vector (半径矢量) as it moves in orbit.
为了计算卫星扫过的面积,我们考虑它在轨道上移动时的半径矢量 (radius vector)。
4.In vector calculus, the radius vector (半径矢量) is often used to represent points in three-dimensional space.
在向量微积分中,半径矢量 (radius vector)常用于表示三维空间中的点。
5.The length of the radius vector (半径矢量) can be calculated using the Pythagorean theorem.
可以使用毕达哥拉斯定理计算半径矢量 (radius vector)的长度。
作文
In the realm of physics and mathematics, understanding the concept of a radius vector is essential for grasping various principles related to motion and geometry. A radius vector can be defined as a vector that originates from a fixed point, usually referred to as the origin, and extends to a specific point in space. This vector not only provides information about the direction of that point relative to the origin but also indicates the distance from the origin to that point. The significance of the radius vector lies in its application across different fields, including astronomy, engineering, and computer graphics.To illustrate the importance of the radius vector, let us consider its role in celestial mechanics. When studying the motion of planets around the sun, astronomers often use the radius vector to describe the position of a planet in its orbit. For instance, if we take Earth as an example, the radius vector would extend from the center of the sun to the center of the Earth. By analyzing the changes in the radius vector over time, scientists can predict the future positions of the Earth and other celestial bodies, which is crucial for navigation and understanding gravitational interactions.Moreover, in the field of engineering, the radius vector plays a vital role in robotics and motion planning. Engineers often need to calculate the position of robotic arms or vehicles in a three-dimensional space. By utilizing radius vectors, they can determine the exact location of each joint or component relative to a reference point. This allows for precise control of movements and enhances the efficiency of automated systems.In computer graphics, the radius vector is equally important. When rendering three-dimensional objects, graphic designers use radius vectors to define the positions of vertices in relation to a central point. This technique enables the creation of realistic models and animations by manipulating the radius vector to simulate movement and perspective changes. Understanding how to work with radius vectors is fundamental for anyone pursuing a career in this field.Furthermore, the mathematical representation of the radius vector is often expressed in Cartesian coordinates as (x, y, z). In polar coordinates, it can be represented as (r, θ), where r denotes the length of the radius vector and θ represents the angle it makes with a reference axis. This versatility in representation allows for easier calculations and transformations, depending on the context in which the radius vector is being used.In conclusion, the radius vector is a fundamental concept that transcends various disciplines, providing a framework for understanding spatial relationships and motion. Whether in celestial mechanics, engineering, or computer graphics, the ability to effectively utilize radius vectors is crucial for advancing knowledge and technology. As we continue to explore the universe and develop new technologies, the significance of the radius vector will undoubtedly remain at the forefront of scientific inquiry and innovation.
在物理学和数学领域,理解“radius vector”这一概念对于掌握与运动和几何相关的各种原理至关重要。“radius vector”可以定义为一个向量,它起源于一个固定点,通常称为原点,并延伸到空间中的特定点。这个向量不仅提供了该点相对于原点的方向信息,还指示了从原点到该点的距离。“radius vector”的重要性在于它在天文学、工程学和计算机图形学等不同领域的应用。为了说明“radius vector”的重要性,让我们考虑它在天体力学中的作用。在研究行星围绕太阳运动时,天文学家经常使用“radius vector”来描述行星在其轨道上的位置。例如,如果我们以地球为例,“radius vector”将从太阳的中心延伸到地球的中心。通过分析“radius vector”随时间变化的情况,科学家可以预测地球和其他天体的未来位置,这对于导航和理解引力相互作用至关重要。此外,在工程领域,“radius vector”在机器人技术和运动规划中也发挥着重要作用。工程师通常需要计算机器人手臂或车辆在三维空间中的位置。通过利用“radius vector”,他们可以确定每个关节或组件相对于参考点的确切位置。这使得运动的精确控制成为可能,提高了自动化系统的效率。在计算机图形学中,“radius vector”同样重要。在渲染三维物体时,图形设计师使用“radius vector”来定义顶点相对于中心点的位置。这种技术通过操纵“radius vector”来模拟运动和视角变化,使得创建逼真的模型和动画成为可能。理解如何处理“radius vector”是任何追求该领域职业生涯的人所必需的。此外,“radius vector”的数学表示通常用笛卡尔坐标表示为(x, y, z)。在极坐标中,它可以表示为(r, θ),其中r表示“radius vector”的长度,θ表示它与参考轴形成的角度。这种表示的多样性使得根据“radius vector”的使用上下文进行更容易的计算和变换成为可能。总之,“radius vector”是一个基本概念,它超越了各个学科,为理解空间关系和运动提供了框架。无论是在天体力学、工程学还是计算机图形学,有效利用“radius vector”的能力对于推动知识和技术的进步至关重要。随着我们继续探索宇宙并开发新技术,“radius vector”的重要性无疑将始终处于科学探究和创新的前沿。
相关单词