radiant flux density

简明释义

辐照度

英英释义

Radiant flux density is the amount of radiant energy (or power) per unit area, typically measured in watts per square meter (W/m²), that is emitted, reflected, transmitted, or received by a surface.

辐射通量密度是指单位面积上发射、反射、透过或接收到的辐射能量(或功率),通常以每平方米瓦特(W/m²)为单位进行测量。

例句

1.The radiant flux density 辐射通量密度 of the laser beam was measured to ensure it met safety standards.

激光束的辐射通量密度 辐射通量密度 被测量以确保其符合安全标准。

2.In photometry, we measure the radiant flux density 辐射通量密度 to evaluate light sources.

在光度学中,我们测量辐射通量密度 辐射通量密度 来评估光源。

3.The radiant flux density 辐射通量密度 affects how plants grow under artificial lights.

在人工光源下,辐射通量密度 辐射通量密度 影响植物的生长。

4.The solar panel's efficiency is directly related to the radiant flux density 辐射通量密度 of sunlight it receives.

太阳能电池板的效率与其接收到的阳光的辐射通量密度 辐射通量密度 直接相关。

5.Understanding the radiant flux density 辐射通量密度 is crucial for designing efficient lighting systems.

理解辐射通量密度 辐射通量密度 对于设计高效的照明系统至关重要。

作文

In the field of physics, particularly in the study of electromagnetic radiation, the concept of radiant flux density plays a crucial role in understanding how energy is transferred through space. Radiant flux density is defined as the amount of radiant energy passing through a unit area per unit time, and it is typically measured in watts per square meter (W/m²). This measurement is essential for various applications, including solar energy collection, climate studies, and even in designing lighting systems. To grasp the significance of radiant flux density, one must first consider its relationship with other related concepts such as radiant energy and intensity. Radiant energy refers to the energy carried by electromagnetic waves, which can include visible light, ultraviolet light, infrared radiation, and more. When this energy travels through space and strikes a surface, it can be quantified by measuring the radiant flux density at that surface. For instance, when considering solar panels, the radiant flux density of sunlight hitting the panels directly influences their efficiency in converting solar energy into electricity. The higher the radiant flux density, the more energy is available for conversion. This principle is vital for optimizing the placement and orientation of solar panels to maximize their exposure to sunlight throughout the day. Moreover, radiant flux density is not only relevant to renewable energy technologies but also has implications in environmental science. Researchers often measure the radiant flux density of sunlight reaching the Earth's surface to understand the effects of climate change. Changes in radiant flux density over time can indicate shifts in atmospheric conditions or alterations in land use that impact local climates. For example, urban areas may experience different radiant flux density levels compared to rural areas due to the heat island effect, where concrete and asphalt absorb and re-radiate heat differently than natural landscapes. In addition to these practical applications, radiant flux density also has theoretical importance in the study of radiative transfer. This field examines how radiation interacts with matter, including absorption, emission, and scattering processes. Understanding radiant flux density helps scientists develop models that predict how energy moves through the atmosphere and interacts with various surfaces, which is critical for climate modeling and predicting weather patterns. In summary, the concept of radiant flux density is fundamental in physics, especially in contexts involving energy transfer through electromagnetic radiation. Whether it is for harnessing solar energy, studying environmental changes, or modeling radiative processes, comprehending radiant flux density equips researchers and engineers with the necessary tools to tackle various challenges. As technology advances and the world increasingly relies on sustainable energy solutions, the significance of radiant flux density will undoubtedly continue to grow, making it an essential concept for future exploration and innovation.

在物理学领域,尤其是在电磁辐射的研究中,辐射通量密度的概念在理解能量如何通过空间传递方面起着至关重要的作用。辐射通量密度被定义为单位面积每单位时间通过的辐射能量的数量,通常以瓦特每平方米(W/m²)为单位进行测量。这一测量对于各种应用至关重要,包括太阳能收集、气候研究,甚至在设计照明系统时。为了掌握辐射通量密度的重要性,首先必须考虑它与其他相关概念(如辐射能和强度)之间的关系。辐射能是指由电磁波携带的能量,这可以包括可见光、紫外光、红外辐射等。当这些能量通过空间传播并撞击表面时,可以通过测量该表面的辐射通量密度来量化。例如,在考虑太阳能电池板时,直接影响电池板效率的因素就是阳光照射到电池板上的辐射通量密度辐射通量密度越高,可供转换的能量就越多。这一原理对于优化太阳能电池板的放置和朝向,使其在一天内最大限度地接触阳光至关重要。此外,辐射通量密度不仅与可再生能源技术相关,还对环境科学具有重要意义。研究人员经常测量阳光照射到地球表面的辐射通量密度,以了解气候变化的影响。辐射通量密度随时间的变化可能表明大气条件的变化或影响局部气候的土地利用变化。例如,由于热岛效应,城市地区的辐射通量密度水平可能与农村地区不同,因为混凝土和沥青的吸热和重新辐射热量的方式与自然景观不同。除了这些实际应用之外,辐射通量密度在辐射传输的研究中也具有理论重要性。该领域研究辐射与物质的相互作用,包括吸收、发射和散射过程。理解辐射通量密度有助于科学家开发预测能量如何通过大气移动并与各种表面相互作用的模型,这对于气候建模和天气模式预测至关重要。总之,辐射通量密度的概念在物理学中是基础性的,特别是在涉及通过电磁辐射传递能量的上下文中。无论是为了利用太阳能、研究环境变化,还是建模辐射过程,理解辐射通量密度都为研究人员和工程师提供了应对各种挑战的必要工具。随着技术的进步以及世界日益依赖可持续能源解决方案,辐射通量密度的重要性无疑将继续增长,使其成为未来探索和创新的基本概念。

相关单词

radiant

radiant详解:怎么读、什么意思、用法

density

density详解:怎么读、什么意思、用法