phase contrast microscope

简明释义

相位差显微镜

英英释义

A phase contrast microscope is an optical microscope that enhances the contrast of transparent and colorless specimens by converting phase shifts in light passing through the specimen into brightness changes in the image.

相位差显微镜是一种光学显微镜,通过将光在样本中传播时的相位变化转化为图像中的亮度变化,从而增强透明和无色样本的对比度。

例句

1.With a phase contrast microscope, you can observe living organisms in their natural state.

使用相差显微镜,您可以观察到生物体在其自然状态下的样子。

2.The researcher used a phase contrast microscope to observe the live cells without staining them.

研究人员使用相差显微镜观察活细胞,而无需对其进行染色。

3.The phase contrast microscope allowed us to see the internal structures of the cells clearly.

这台相差显微镜使我们能够清晰地看到细胞的内部结构。

4.In microbiology, a phase contrast microscope is essential for studying the morphology of bacteria.

在微生物学中,相差显微镜对于研究细菌形态至关重要。

5.Our lab recently acquired a phase contrast microscope to enhance our research capabilities.

我们的实验室最近购置了一台相差显微镜,以增强我们的研究能力。

作文

The development of microscopy has significantly advanced our understanding of biological processes. One of the most important inventions in this field is the phase contrast microscope. This innovative tool allows scientists to observe living cells and their structures without the need for staining, which can often alter or damage the specimens. The phase contrast microscope works by enhancing the contrast of transparent specimens, making it possible to visualize details that would otherwise be invisible under a standard light microscope.In traditional microscopy, many biological samples are nearly transparent, leading to difficulties in observing their features. For instance, when looking at live cells, researchers often struggle to see the organelles or other internal structures due to the lack of color and contrast. However, with the use of a phase contrast microscope, light waves passing through different parts of a cell are manipulated to create variations in brightness. This technique takes advantage of the phase shifts that occur as light travels through different media, allowing for a clearer image of the cellular components.The invention of the phase contrast microscope by Frits Zernike in the 1930s revolutionized the field of biology and medicine. Zernike's work earned him the Nobel Prize in Physics in 1953, highlighting the significance of this tool in scientific research. Before the advent of this technology, studying live cells was a significant challenge, as most techniques required fixation or staining, which could compromise the integrity of the sample.Today, the phase contrast microscope is widely used in various fields, including microbiology, cell biology, and medical diagnostics. Researchers utilize this microscope to study cell division, motility, and the behavior of microorganisms in real-time. For example, scientists can observe how cancer cells proliferate or how immune cells respond to pathogens, providing valuable insights into disease mechanisms and potential treatments.Moreover, the phase contrast microscope has applications beyond basic research. In clinical laboratories, it is employed to examine blood smears, identify pathogens, and assess cell morphology in diagnostic samples. This capability is crucial for early detection of diseases and monitoring patient health.As technology continues to advance, newer versions of the phase contrast microscope have emerged, incorporating digital imaging and advanced software for enhanced analysis. These innovations allow for more precise measurements and automated processes, further improving the efficiency of research and diagnostics.In conclusion, the phase contrast microscope represents a pivotal advancement in the field of microscopy, enabling scientists to explore the intricate details of living cells without compromising their natural state. Its impact on biological research and medical diagnostics cannot be overstated, as it has opened new avenues for understanding life at the cellular level. As we continue to refine and enhance this technology, we can expect even greater discoveries in the realms of biology and medicine, ultimately benefiting society as a whole.

显微镜的发展极大地推动了我们对生物过程的理解。在这个领域中,最重要的发明之一就是相差显微镜。这一创新工具使科学家能够观察活细胞及其结构,而无需染色,因为染色常常会改变或损害样本。相差显微镜通过增强透明样本的对比度,使得可视化通常在标准光学显微镜下不可见的细节成为可能。在传统显微镜中,许多生物样本几乎是透明的,这导致观察其特征时遇到困难。例如,在观察活细胞时,研究人员常常难以看到细胞器或其他内部结构,因为缺乏颜色和对比度。然而,通过使用相差显微镜,光线经过细胞不同部分时被操控,从而产生亮度的变化。这种技术利用了光线在不同介质中传播时发生的相位变化,使得细胞成分的图像更加清晰。相差显微镜是由弗里茨·泽尔尼克于20世纪30年代发明的,彻底改变了生物学和医学领域。泽尔尼克的工作使他获得了1953年诺贝尔物理学奖,突显了这一工具在科学研究中的重要性。在这种技术出现之前,研究活细胞是一项重大挑战,因为大多数技术需要固定或染色,这可能会损害样本的完整性。如今,相差显微镜广泛应用于微生物学、细胞生物学和医学诊断等多个领域。研究人员利用这种显微镜研究细胞分裂、运动和微生物在实时中的行为。例如,科学家可以观察癌细胞如何增殖或免疫细胞如何应对病原体,从而提供对疾病机制和潜在治疗的宝贵见解。此外,相差显微镜在基础研究之外还有其他应用。在临床实验室中,它被用于检查血涂片、识别病原体和评估诊断样本中的细胞形态。这一能力对于早期检测疾病和监测患者健康至关重要。随着技术的不断进步,更新版本的相差显微镜相继问世,结合了数字成像和先进的软件,以增强分析能力。这些创新允许更精确的测量和自动化过程,进一步提高了研究和诊断的效率。总之,相差显微镜代表了显微镜领域的一次重要进展,使科学家能够探索活细胞的复杂细节,而不影响其自然状态。它对生物研究和医学诊断的影响不可小觑,因为它为理解细胞水平上的生命开辟了新途径。随着我们继续改进和增强这一技术,我们可以期待在生物学和医学领域取得更大的发现,最终惠及整个社会。

相关单词

phase

phase详解:怎么读、什么意思、用法

microscope

microscope详解:怎么读、什么意思、用法