peclet number

简明释义

皮克列数

英英释义

The Peclet number is a dimensionless quantity that characterizes the relative importance of convection to diffusion in transport phenomena.

佩克莱数是一个无量纲量,表征了对流与扩散在传输现象中相对重要性的大小。

例句

1.When analyzing heat transfer in a pipe, engineers often calculate the peclet number 佩克特数 to predict thermal behavior.

在分析管道中的热传递时,工程师通常计算 peclet number 佩克特数 以预测热行为。

2.The peclet number 佩克特数 can be used to characterize flow regimes in chemical reactors.

可以使用 peclet number 佩克特数 来表征化学反应器中的流动状态。

3.In fluid dynamics, the peclet number 佩克特数 is crucial for determining the relative importance of convection to diffusion.

在流体动力学中,peclet number 佩克特数 对于确定对流与扩散的相对重要性至关重要。

4.A high peclet number 佩克特数 indicates that convection dominates over diffusion in the transport of substances.

peclet number 佩克特数 表明在物质运输中对流优于扩散。

5.In environmental engineering, the peclet number 佩克特数 helps assess pollutant transport in groundwater.

在环境工程中,peclet number 佩克特数 有助于评估地下水中污染物的运输。

作文

The study of fluid dynamics and heat transfer is crucial in various engineering applications, such as chemical processing, environmental engineering, and energy systems. One important dimensionless number that helps characterize the behavior of these processes is the peclet number. The peclet number is a dimensionless quantity that represents the ratio of convective transport to diffusive transport of a physical quantity, such as heat or mass. It is defined mathematically as Pe = UL/D, where U is the characteristic velocity, L is the characteristic length, and D is the diffusion coefficient. Understanding the peclet number is essential for engineers and scientists as it provides insight into the relative importance of convection and diffusion in a given system.In many practical situations, the peclet number can be used to predict how substances will behave under different conditions. For instance, in the case of heat exchangers, a high peclet number indicates that convection dominates over diffusion, which means that the heat transfer will be more efficient. Conversely, a low peclet number suggests that diffusion plays a more significant role, potentially leading to slower heat transfer rates. This understanding allows engineers to design systems that optimize heat transfer by manipulating flow rates and other parameters to achieve the desired peclet number.Additionally, the peclet number is not only relevant in thermal applications but also in mass transfer processes. In chemical reactors, for example, the peclet number can help determine the effectiveness of mixing and reaction rates. A high peclet number indicates that the mixing is dominated by convection, leading to more uniform concentration distributions throughout the reactor. In contrast, a low peclet number suggests that diffusion is more significant, which can lead to concentration gradients and potentially hinder the overall reaction efficiency.Furthermore, the peclet number has implications in environmental engineering, particularly in the study of pollutant transport in water bodies. When analyzing the dispersion of contaminants, a high peclet number means that pollutants are being transported primarily by advection, while a low peclet number indicates that diffusion is more significant. This understanding is vital for designing effective remediation strategies to mitigate the impact of pollution on ecosystems.In conclusion, the peclet number is a fundamental concept in fluid dynamics and heat transfer that quantifies the relative contributions of convection and diffusion. Its applications span across various fields, including chemical engineering, environmental science, and energy systems. By comprehensively understanding the peclet number, professionals can make informed decisions that lead to more efficient designs and processes. As technology continues to advance, the significance of dimensionless numbers like the peclet number will remain crucial in optimizing systems and addressing complex engineering challenges.

在流体动力学和热传递的研究中,这对于化工、环境工程和能源系统等各种工程应用至关重要。一个重要的无量纲数,帮助表征这些过程的行为是佩克莱数佩克莱数是一个无量纲量,代表了物理量(如热量或质量)的对流输送与扩散输送的比率。它的数学定义为Pe = UL/D,其中U是特征速度,L是特征长度,D是扩散系数。理解佩克莱数对于工程师和科学家至关重要,因为它提供了关于给定系统中对流和扩散相对重要性的见解。在许多实际情况下,佩克莱数可以用来预测物质在不同条件下的行为。例如,在热交换器的情况下,高佩克莱数表明对流主导于扩散,这意味着热传递将更加有效。相反,低佩克莱数则表明扩散起着更重要的作用,这可能导致较慢的热传递速率。这种理解使工程师能够通过操控流速和其他参数来设计优化热传递的系统,以实现所需的佩克莱数。此外,佩克莱数不仅在热应用中相关,而且在质量传递过程中也是如此。在化学反应器中,佩克莱数可以帮助确定混合和反应速率的有效性。高佩克莱数表明混合主要由对流主导,导致反应器内浓度分布更均匀。相反,低佩克莱数则表明扩散更为显著,这可能导致浓度梯度,并可能阻碍整体反应效率。此外,佩克莱数在环境工程中的应用,特别是在水体污染物运输的研究中也具有重要意义。在分析污染物的扩散时,高佩克莱数意味着污染物主要通过对流运输,而低佩克莱数则表明扩散更为显著。这种理解对于设计有效的修复策略以减轻污染对生态系统的影响至关重要。总之,佩克莱数是流体动力学和热传递中的一个基本概念,量化对流和扩散的相对贡献。它的应用跨越多个领域,包括化学工程、环境科学和能源系统。通过全面理解佩克莱数,专业人员可以做出明智的决策,从而导致更高效的设计和过程。随着技术的不断进步,无量纲数如佩克莱数的重要性将在优化系统和解决复杂工程挑战中继续存在。