nyquist diagram

简明释义

尼奎斯特图

英英释义

A Nyquist diagram is a graphical representation used in control theory and signal processing that plots the frequency response of a system in the complex plane, specifically the real versus the imaginary components of the transfer function as a function of frequency.

Nyquist图是控制理论和信号处理中的一种图形表示,绘制了系统的频率响应在复平面上的表现,具体为转移函数的实部与虚部随频率变化的关系。

例句

1.The nyquist diagram (奈奎斯特图) helps in determining the gain margin and phase margin of the system.

nyquist diagram奈奎斯特图)有助于确定系统的增益裕度和相位裕度。

2.To analyze the stability of the control system, we plotted the nyquist diagram (奈奎斯特图).

为了分析控制系统的稳定性,我们绘制了nyquist diagram奈奎斯特图)。

3.The nyquist diagram (奈奎斯特图) is a crucial tool in assessing the frequency response of a system.

在评估系统的频率响应时,nyquist diagram奈奎斯特图)是一个关键工具。

4.In our signal processing course, we learned how to create a nyquist diagram (奈奎斯特图) for various filters.

在我们的信号处理课程中,我们学习了如何为各种滤波器创建nyquist diagram奈奎斯特图)。

5.Engineers often refer to the nyquist diagram (奈奎斯特图) to ensure proper design of feedback loops.

工程师们常常参考nyquist diagram奈奎斯特图)以确保反馈回路的正确设计。

作文

The field of control systems and signal processing has seen numerous advancements over the years, one of which is the development of the nyquist diagram. A nyquist diagram is a graphical representation used to analyze the stability of a system in the frequency domain. It is named after the Swedish engineer Harry Nyquist, who made significant contributions to the theory of feedback systems. Understanding the nyquist diagram is crucial for engineers and scientists as it provides insights into how a system responds to different frequencies of input signals.To comprehend the importance of the nyquist diagram, we must first delve into the concept of frequency response. Frequency response refers to how a system reacts to various frequencies, and it is essential for determining the stability and performance of control systems. The nyquist diagram plots the complex frequency response of a system on a polar coordinate system. The horizontal axis represents the real part of the response, while the vertical axis represents the imaginary part. This visualization allows engineers to assess the behavior of the system across a range of frequencies.One of the key features of the nyquist diagram is its ability to indicate the stability of a closed-loop system. By encircling a specific point known as the critical point (-1,0) in the complex plane, engineers can determine whether the system will remain stable under various conditions. If the nyquist diagram encircles this point in a clockwise direction, it indicates that the system is unstable. Conversely, if it does not encircle the point, the system is considered stable. This characteristic makes the nyquist diagram a powerful tool for control system design and analysis.Another important aspect of the nyquist diagram is its relationship with the Nyquist stability criterion. This criterion provides a mathematical framework for predicting the stability of a system based on its frequency response. By analyzing the nyquist diagram, engineers can apply this criterion to design controllers that ensure the desired stability and performance of a system. This process often involves adjusting parameters within the control system to optimize its response.In practice, the nyquist diagram is widely used in various engineering fields, including electrical, mechanical, and aerospace engineering. For instance, in electrical engineering, it is employed to design and analyze filters, amplifiers, and other electronic circuits. In mechanical engineering, the nyquist diagram aids in the design of control systems for robotic arms and autonomous vehicles. Its versatility makes it an indispensable tool in modern engineering.In conclusion, the nyquist diagram is a fundamental concept in the study of control systems and signal processing. Its ability to represent the frequency response of a system provides valuable insights into stability and performance. By understanding and utilizing the nyquist diagram, engineers can design more effective and reliable systems across a wide range of applications. As technology continues to evolve, the relevance of the nyquist diagram remains paramount in ensuring that our systems operate efficiently and safely.

控制系统和信号处理领域多年来经历了许多进步,其中之一是开发了奈奎斯特图奈奎斯特图是一种用于分析系统在频域中稳定性的图形表示。它以瑞典工程师哈里·奈奎斯特的名字命名,他对反馈系统理论做出了重要贡献。理解奈奎斯特图对工程师和科学家至关重要,因为它提供了系统如何响应不同频率输入信号的见解。要理解奈奎斯特图的重要性,我们首先必须深入了解频率响应的概念。频率响应指的是系统如何对各种频率作出反应,这是确定控制系统稳定性和性能的关键。奈奎斯特图在极坐标系上绘制系统的复频率响应。横轴代表响应的实部,而纵轴代表虚部。这种可视化使工程师能够评估系统在一系列频率下的行为。奈奎斯特图的一个关键特征是它能够指示闭环系统的稳定性。通过在复平面上围绕一个称为临界点(-1,0)进行圈定,工程师可以确定系统在各种条件下是否会保持稳定。如果奈奎斯特图以顺时针方向围绕该点,则表明系统不稳定。相反,如果它没有围绕该点,则认为系统是稳定的。这个特性使得奈奎斯特图成为控制系统设计和分析的强大工具。奈奎斯特图的另一个重要方面是它与奈奎斯特稳定性准则的关系。该准则提供了一个数学框架,用于根据频率响应预测系统的稳定性。通过分析奈奎斯特图,工程师可以应用这一准则来设计确保系统所需稳定性和性能的控制器。这个过程通常涉及调整控制系统中的参数,以优化其响应。在实践中,奈奎斯特图在电气、机械和航空航天工程等多个工程领域被广泛使用。例如,在电气工程中,它被用于设计和分析滤波器、放大器和其他电子电路。在机械工程中,奈奎斯特图有助于设计机器人手臂和自主车辆的控制系统。它的多功能性使其成为现代工程中不可或缺的工具。总之,奈奎斯特图是控制系统和信号处理研究中的基本概念。它能够表示系统的频率响应,为稳定性和性能提供了宝贵的见解。通过理解和利用奈奎斯特图,工程师可以设计出更有效和可靠的系统,适用于广泛的应用。随着技术的不断发展,奈奎斯特图的相关性在确保我们的系统高效、安全地运行方面仍然至关重要。