nuclear fusion
简明释义
核聚变
英英释义
例句
1.The recent experiments showed promising results for nuclear fusion 核聚变 technology.
最近的实验显示了核聚变 核聚变技术的良好前景。
2.Many believe that nuclear fusion 核聚变 could solve the world's energy crisis.
许多人相信核聚变 核聚变可以解决世界能源危机。
3.Scientists are researching how to achieve sustainable nuclear fusion 核聚变 as a clean energy source.
科学家们正在研究如何实现可持续的核聚变 核聚变,作为一种清洁能源。
4.The ITER project aims to demonstrate the feasibility of nuclear fusion 核聚变 as a large-scale energy source.
国际热核聚变实验堆(ITER)项目旨在证明核聚变 核聚变作为大规模能源来源的可行性。
5.Researchers are excited about the potential of nuclear fusion 核聚变 for providing limitless energy.
研究人员对核聚变 核聚变提供无限能源的潜力感到兴奋。
作文
Nuclear fusion is a process that powers the sun and other stars. It is the reaction in which two light atomic nuclei combine to form a heavier nucleus, releasing a significant amount of energy in the process. This phenomenon is not only fascinating from a scientific perspective but also holds great promise for energy production on Earth. In this essay, we will explore the principles of Nuclear Fusion (核聚变), its potential applications, and the challenges that need to be overcome to harness it effectively.The fundamental principle behind Nuclear Fusion (核聚变) lies in the strong nuclear force that binds protons and neutrons together in an atomic nucleus. When two light nuclei, such as isotopes of hydrogen—deuterium and tritium—are brought close enough, they can overcome the electrostatic repulsion between their positively charged protons and fuse together. This fusion releases energy according to Einstein's mass-energy equivalence principle, E=mc², where a small amount of mass is converted into a large amount of energy.One of the most appealing aspects of Nuclear Fusion (核聚变) is its potential as a clean and virtually limitless source of energy. Unlike fossil fuels, which release harmful greenhouse gases and contribute to climate change, Nuclear Fusion (核聚变) produces no long-lived radioactive waste. The primary fuel for fusion reactions, isotopes of hydrogen, can be extracted from water, making it abundant and accessible. Additionally, the energy output from fusion reactions is significantly higher than that from chemical reactions, providing the possibility of meeting the world's growing energy demands sustainably.Despite its advantages, achieving practical Nuclear Fusion (核聚变) has proven to be a formidable challenge. The conditions required for fusion—extremely high temperatures (millions of degrees Celsius) and pressures—are difficult to replicate on Earth. Scientists have been working on various approaches to create and maintain these conditions, including magnetic confinement in devices like tokamaks and inertial confinement using lasers. While there have been significant advancements in fusion research, such as achieving net energy gain in experimental reactors, commercial viability remains a goal yet to be realized.Moreover, funding and international collaboration are crucial for the future of Nuclear Fusion (核聚变) research. Projects like ITER (International Thermonuclear Experimental Reactor) in France bring together scientists and engineers from around the world to work towards demonstrating the feasibility of fusion as a power source. Such collaboration not only accelerates technological advancements but also fosters a global commitment to sustainable energy solutions.In conclusion, Nuclear Fusion (核聚变) represents a promising avenue for addressing the world's energy challenges. Its potential to provide a clean, safe, and abundant energy source makes it a focal point of ongoing scientific research. While significant hurdles remain, the continued investment in fusion technology and international cooperation could pave the way for a future where Nuclear Fusion (核聚变) becomes a cornerstone of our energy landscape. As we strive to combat climate change and transition to renewable energy sources, the pursuit of Nuclear Fusion (核聚变) may very well hold the key to a sustainable future.
核聚变是驱动太阳和其他恒星的过程。它是两个轻原子核结合形成一个更重的原子核的反应,在这个过程中释放出大量能量。这一现象不仅在科学上令人着迷,而且在地球上的能源生产中也具有巨大的潜力。在这篇文章中,我们将探讨Nuclear Fusion(核聚变)的原理、其潜在应用以及需要克服的挑战,以有效利用它。Nuclear Fusion(核聚变)的基本原理在于强核力,它将质子和中子结合在一起。当两个轻核,例如氢的同位素——氘和氚,靠得足够近时,它们可以克服正电荷质子之间的静电排斥力并融合在一起。这种融合根据爱因斯坦的质量-能量等价原理E=mc²释放能量,其中少量质量转化为大量能量。Nuclear Fusion(核聚变)最吸引人的方面之一是它作为一种清洁且几乎无限的能源来源的潜力。与释放有害温室气体并导致气候变化的化石燃料不同,Nuclear Fusion(核聚变)不会产生长期存在的放射性废物。融合反应的主要燃料,氢的同位素,可以从水中提取,使其丰富且易于获取。此外,融合反应的能量输出显著高于化学反应,为可持续满足全球日益增长的能源需求提供了可能性。尽管有其优势,实现实用的Nuclear Fusion(核聚变)被证明是一项艰巨的挑战。融合所需的条件——极高的温度(数百万摄氏度)和压力——在地球上很难复制。科学家们一直在研究各种方法来创造和维持这些条件,包括在托卡马克等设备中进行磁约束和使用激光进行惯性约束。虽然在融合研究中取得了重大进展,例如在实验反应堆中实现净能量增益,但商业可行性仍然是一个尚待实现的目标。此外,资金和国际合作对Nuclear Fusion(核聚变)研究的未来至关重要。法国的国际热核聚变实验堆(ITER)等项目汇集了来自世界各地的科学家和工程师,共同致力于展示融合作为能源来源的可行性。这种合作不仅加速了技术进步,还促进了全球对可持续能源解决方案的承诺。总之,Nuclear Fusion(核聚变)代表了解决全球能源挑战的有希望的途径。它提供清洁、安全和丰盈的能源来源的潜力,使其成为持续科学研究的重点。尽管仍然存在显著的障碍,但对融合技术的持续投资和国际合作可能为未来铺平道路,使Nuclear Fusion(核聚变)成为我们能源格局的基石。在我们努力应对气候变化并过渡到可再生能源的过程中,追求Nuclear Fusion(核聚变)可能确实是通向可持续未来的关键。
相关单词