chromodynamics

简明释义

[ˌkrəʊməʊdaɪˈnæmɪks][ˌkromodaɪˈnæmɪks]

n. [核]色动力学(等于 quantum chromodynamics

英英释义

Chromodynamics is a branch of theoretical physics that studies the strong interaction, which is one of the four fundamental forces in nature, specifically focusing on the interactions between quarks and gluons.

色动力学是理论物理学的一个分支,研究强相互作用,这是自然界四种基本力之一,特别关注夸克和胶子之间的相互作用。

单词用法

quantum chromodynamics

量子色动力学

asymptotic freedom in chromodynamics

色动力学中的渐近自由

color charge in chromodynamics

色荷在色动力学中

the principles of chromodynamics

色动力学的原理

the equations of chromodynamics

色动力学的方程

chromodynamics interactions

色动力学相互作用

同义词

quantum chromodynamics

量子色动力学

Quantum chromodynamics is a fundamental theory in particle physics.

量子色动力学是粒子物理学中的一个基本理论。

QCD

量子色动力学(缩写)

QCD describes the strong interaction between quarks and gluons.

量子色动力学描述了夸克和胶子之间的强相互作用。

反义词

thermodynamics

热力学

The laws of thermodynamics govern the behavior of energy in physical systems.

热力学定律支配着物理系统中能量的行为。

mechanics

力学

Classical mechanics describes the motion of objects under the influence of forces.

经典力学描述了物体在力的作用下的运动。

例句

1.Sheldon: Look at the beta function of quantum chromodynamics. The signs' been changed.

看看量子色动力学的贝塔函数,符号被改掉了。

2.Sheldon: Look at the beta function of quantum chromodynamics. The signs' been changed.

看看量子色动力学的贝塔函数,符号被改掉了。

3.It includes two parts in theory: electroweak theory and Quantum Chromodynamics (QCD).

理论中包括两部分:电弱统一理论和量子色动力学(QCD)。

4.Quantum Chromodynamics (QCD) is the best candidate of the strong interaction theory.

量子色动力学(QCD)是强作用理论最好的候补者。

5.The equations of chromodynamics can be quite complex, involving multiple variables and interactions, which translates to 量子色动力学的方程可能非常复杂,涉及多个变量和相互作用。

这使得理论物理学家需要深入理解这些概念,才能进行有效的研究。

6.The concept of chromodynamics was developed in the 1970s and has since become a cornerstone of modern physics, 意味着量子色动力学的概念是在20世纪70年代发展起来的,并已成为现代物理学的基石。

它帮助科学家们解释了夸克和胶子之间的相互作用。

7.Recent experiments have provided new insights into chromodynamics, shedding light on 量子色动力学的新见解,揭示了强相互作用的本质。

这对我们理解宇宙的基本构成有着重要意义。

8.Many researchers are focused on the implications of chromodynamics for the early universe, as 量子色动力学对早期宇宙的影响至关重要。

了解这一点有助于我们探索宇宙的起源。

9.In particle physics, the study of strong interactions is often referred to as chromodynamics, which means 量子色动力学.

在粒子物理学中,强相互作用的研究通常被称为chromodynamics,即量子色动力学

作文

In the realm of theoretical physics, one of the most fascinating and complex areas of study is quantum chromodynamics (QCD). This branch of physics focuses on the interactions between quarks and gluons, the fundamental constituents of protons and neutrons. The term chromodynamics refers to the 'color' charge that these particles carry, which is analogous to electric charge in electromagnetism but comes in three types: red, green, and blue. Understanding chromodynamics is crucial for explaining how strong forces operate at the subatomic level.The significance of chromodynamics cannot be overstated; it provides a framework for understanding how quarks combine to form protons, neutrons, and other hadrons. These interactions are governed by the strong force, one of the four fundamental forces of nature. Unlike gravity or electromagnetism, the strong force becomes stronger as quarks move further apart, a phenomenon known as confinement. This unique property leads to the formation of hadrons, which are stable combinations of quarks held together by gluons.One of the key features of chromodynamics is the concept of asymptotic freedom. This principle states that quarks behave almost like free particles when they are very close together, but as they move apart, they experience a growing force that pulls them back together. This counterintuitive behavior is essential for understanding high-energy particle collisions, such as those studied at particle accelerators like the Large Hadron Collider (LHC).Research in chromodynamics has profound implications for our understanding of the universe. For example, it helps explain the behavior of matter in extreme conditions, such as those found in neutron stars or during the early moments of the Big Bang. By studying chromodynamics, physicists can gain insights into the fundamental building blocks of matter and the forces that govern their interactions.Moreover, chromodynamics plays a vital role in the development of new technologies. The principles derived from QCD have applications in various fields, including medical imaging, materials science, and even quantum computing. As scientists continue to explore the depths of chromodynamics, they uncover new phenomena that challenge our existing theories and expand our understanding of the physical world.In conclusion, chromodynamics is an essential part of modern physics that provides deep insights into the interactions of fundamental particles. Its study not only enhances our comprehension of the universe but also drives technological advancements that benefit society. As we continue to unravel the mysteries of chromodynamics, we pave the way for future discoveries that could redefine our understanding of the cosmos. The journey into the world of chromodynamics is ongoing, and its potential for revealing the secrets of matter and energy remains a thrilling frontier in scientific research.

在理论物理学的领域中,量子色动力学(QCD)是一个最迷人且复杂的研究领域之一。这个物理学分支关注的是夸克和胶子之间的相互作用,夸克和胶子是质子和中子的基本组成部分。术语chromodynamics指的是这些粒子所携带的“颜色”电荷,这与电磁学中的电荷类似,但有三种类型:红色、绿色和蓝色。理解chromodynamics对于解释强力如何在亚原子层面上运作至关重要。chromodynamics的重要性不容小觑;它为理解夸克如何结合形成质子、中子和其他强子提供了框架。这些相互作用受强力的支配,强力是自然界四种基本力量之一。与引力或电磁力不同,强力在夸克彼此远离时变得更强,这一现象被称为禁闭。这一独特的属性导致了强子的形成,强子是由夸克通过胶子紧密结合而成的稳定组合。chromodynamics的一个关键特征是渐近自由的概念。这个原则表明,当夸克非常靠近时,它们几乎表现得像自由粒子,但随着它们的远离,经历的力会增强并将它们拉回。这个悖论的行为对于理解高能粒子碰撞至关重要,例如在大型强子对撞机(LHC)等粒子加速器中进行的研究。对chromodynamics的研究对我们理解宇宙有深远的影响。例如,它帮助解释在极端条件下物质的行为,如中子星或大爆炸早期时的情况。通过研究chromodynamics,物理学家可以深入了解物质的基本构成以及支配其相互作用的力量。此外,chromodynamics在新技术的发展中也发挥着重要作用。从QCD中得出的原理在医学成像、材料科学甚至量子计算等多个领域都有应用。随着科学家继续探索chromodynamics的深度,他们揭示出新的现象,挑战我们现有的理论,并扩展我们对物理世界的理解。总之,chromodynamics是现代物理学中一个不可或缺的部分,为我们提供了对基本粒子相互作用的深刻见解。它的研究不仅增强了我们对宇宙的理解,还推动了有益于社会的技术进步。随着我们继续揭开chromodynamics的神秘面纱,我们为未来的发现铺平了道路,这些发现可能重新定义我们对宇宙的理解。进入chromodynamics世界的旅程仍在继续,其揭示物质和能量秘密的潜力仍然是科学研究中令人振奋的前沿。