magnetic hysteresis
简明释义
磁滞
英英释义
例句
1.The performance of magnetic materials can be significantly affected by magnetic hysteresis 磁滞现象, which determines how they respond to changing magnetic fields.
磁性材料的性能可能会受到显著影响,磁滞现象 磁滞现象决定了它们对变化的磁场的响应。
2.The study of magnetic hysteresis 磁滞现象 helps scientists understand the energy losses in magnetic materials during cycles of magnetization.
对磁滞现象 磁滞现象的研究帮助科学家了解磁性材料在磁化周期中的能量损失。
3.A material with low magnetic hysteresis 磁滞现象 is preferred for applications requiring high efficiency, such as electric motors.
对于需要高效率的应用(如电动机),更倾向于使用具有低磁滞现象 磁滞现象的材料。
4.Engineers must consider magnetic hysteresis 磁滞现象 when designing transformers to ensure efficiency and minimize energy loss.
工程师在设计变压器时必须考虑磁滞现象 磁滞现象以确保效率并最小化能量损失。
5.In hard disk drives, magnetic hysteresis 磁滞现象 is crucial for data storage as it affects the stability of the recorded information.
在硬盘驱动器中,磁滞现象 磁滞现象对数据存储至关重要,因为它影响记录信息的稳定性。
作文
Magnetic materials have unique properties that allow them to respond to magnetic fields in various ways. One such phenomenon is known as magnetic hysteresis, which refers to the lag between the change in magnetization of a material and the external magnetic field applied to it. This behavior is crucial for understanding how certain materials can retain their magnetic properties even after the external magnetic field has been removed. 磁滞现象是指材料的磁化变化与施加的外部磁场之间的滞后关系。这一特性在许多应用中非常重要,例如在电动机、变压器和磁存储设备中。When a magnetic material is subjected to an external magnetic field, its domains—small regions where the magnetic moments of atoms are aligned—begin to align with the field. As the strength of the magnetic field increases, more domains align, resulting in an increase in the overall magnetization of the material. However, once the external field is reduced or removed, not all domains return to their original positions immediately. This delay in returning to the initial state is what we refer to as magnetic hysteresis. 磁滞现象的延迟使得材料能够在没有外部磁场的情况下保持一定的磁性。The hysteresis loop is a graphical representation of this phenomenon, illustrating the relationship between the magnetic field strength and the magnetization of the material. The area within the loop represents energy loss due to the internal friction and other factors when the material is magnetized and demagnetized. This energy loss is particularly important in applications like transformers, where efficiency is key. Understanding magnetic hysteresis helps engineers design better materials that minimize energy losses. 磁滞现象的理解有助于工程师设计更好的材料,以最大限度地减少能量损失。Different materials exhibit varying degrees of magnetic hysteresis. Soft magnetic materials, such as iron, have narrow hysteresis loops, meaning they can be magnetized and demagnetized easily, making them suitable for applications like electromagnets. On the other hand, hard magnetic materials, like certain alloys, have wider hysteresis loops and retain their magnetization even after the external field is removed. This property makes them ideal for permanent magnets used in speakers and motors. 磁滞现象的不同表现使得软磁材料和硬磁材料在各自的应用中发挥着重要作用。In conclusion, magnetic hysteresis is a fundamental concept in magnetism that describes how materials respond to changing magnetic fields. Its implications are vast, affecting the design and efficiency of various electrical devices. By studying 磁滞现象, scientists and engineers can develop materials that optimize performance and reduce energy losses in technology. This understanding is vital in our increasingly electrified world, where efficient energy use is paramount. The exploration of magnetic hysteresis continues to inspire advancements in both theoretical research and practical applications, ensuring that we harness the full potential of magnetic materials for future innovations.
磁性材料具有独特的特性,使其能够以多种方式响应磁场。其中一种现象被称为磁滞现象,指的是材料的磁化变化与施加的外部磁场之间的滞后。这种行为对于理解某些材料如何在外部磁场移除后仍能保持其磁性特征至关重要。磁滞现象是指材料的磁化变化与施加的外部磁场之间的滞后关系。这一特性在许多应用中非常重要,例如在电动机、变压器和磁存储设备中。当磁性材料受到外部磁场的作用时,其内部的微小区域(称为磁畴)开始与该场对齐。随着磁场强度的增加,更多的磁畴对齐,导致材料的整体磁化增加。然而,一旦外部磁场减弱或移除,并不是所有的磁畴都会立即恢复到原来的位置。这种返回初始状态的延迟就是我们所称的磁滞现象。磁滞现象的延迟使得材料能够在没有外部磁场的情况下保持一定的磁性。磁滞回线是这一现象的图形表示,展示了磁场强度与材料磁化之间的关系。回线内的面积代表了由于内部摩擦和其他因素导致的磁化和去磁化过程中的能量损失。这种能量损失在变压器等应用中尤其重要,效率是关键。理解磁滞现象帮助工程师设计出更好的材料,以最大限度地减少能量损失。磁滞现象的理解有助于工程师设计更好的材料,以最大限度地减少能量损失。不同材料表现出不同程度的磁滞现象。软磁材料,如铁,具有窄的磁滞回线,这意味着它们可以很容易地被磁化和去磁,非常适合用于电磁铁等应用。另一方面,硬磁材料,如某些合金,具有较宽的磁滞回线,即使在外部磁场移除后也能保持其磁化。这种特性使它们非常适合用于扬声器和电动机等永久磁铁。磁滞现象的不同表现使得软磁材料和硬磁材料在各自的应用中发挥着重要作用。总之,磁滞现象是磁学中的一个基本概念,描述了材料如何响应变化的磁场。其影响范围广泛,影响各种电气设备的设计和效率。通过研究磁滞现象,科学家和工程师可以开发出优化性能并减少技术中能量损失的材料。这种理解在我们日益电气化的世界中至关重要,而高效的能源使用则是重中之重。对磁滞现象的探索继续激励着理论研究和实际应用的进步,确保我们充分利用磁性材料的潜力,以推动未来的创新。
相关单词