irreversible thermodynamics

简明释义

不可逆热力学

英英释义

Irreversible thermodynamics is a branch of thermodynamics that deals with systems that are not in equilibrium and where energy transformations occur with irreversible processes, leading to entropy production.

不可逆热力学是热力学的一个分支,研究不处于平衡状态的系统,其中能量转化发生在不可逆过程中,导致熵的产生。

例句

1.In biological systems, irreversible thermodynamics 不可逆热力学 helps explain metabolic processes.

在生物系统中,不可逆热力学有助于解释代谢过程。

2.The concept of entropy is central to irreversible thermodynamics 不可逆热力学, indicating the direction of natural processes.

熵的概念是不可逆热力学的核心,指示自然过程的方向。

3.The study of irreversible thermodynamics 不可逆热力学 is crucial for understanding energy dissipation in engines.

研究不可逆热力学对于理解发动机中的能量耗散至关重要。

4.Engineers often rely on irreversible thermodynamics 不可逆热力学 when designing efficient thermal systems.

工程师在设计高效热系统时常常依赖不可逆热力学

5.The principles of irreversible thermodynamics 不可逆热力学 can be applied to analyze heat flow in materials.

可以应用不可逆热力学的原理来分析材料中的热流。

作文

The study of thermodynamics is a fundamental aspect of physics and engineering that deals with the relationships between heat, work, temperature, and energy. Among the various branches of thermodynamics, irreversible thermodynamics plays a crucial role in understanding real-world processes. Unlike reversible thermodynamic processes, which can theoretically be reversed without any net change to the system or surroundings, irreversible thermodynamics focuses on processes that cannot simply be reversed. This distinction is essential because most natural processes are irreversible, meaning they tend to move towards a state of equilibrium and cannot spontaneously return to their original states.In irreversible thermodynamics, we analyze how systems evolve over time when they are subjected to external forces or gradients, such as temperature differences, pressure differences, or concentration gradients. For example, when a hot object comes into contact with a cold one, heat flows from the hot object to the cold one until thermal equilibrium is reached. This process is irreversible because once the heat has been transferred, the original state of the hot object cannot be restored without adding energy to the system.One of the key principles of irreversible thermodynamics is the concept of entropy. Entropy is a measure of the disorder or randomness in a system, and it tends to increase over time in irreversible processes. According to the second law of thermodynamics, the total entropy of an isolated system can never decrease; it can only remain constant or increase. This principle explains why certain processes, such as mixing two different gases or melting ice, are irreversible. As these processes occur, the overall entropy of the system increases, reflecting a transition from a more ordered state to a more disordered one.The implications of irreversible thermodynamics extend beyond theoretical physics; they have practical applications in various fields, including engineering, chemistry, and environmental science. For instance, in chemical reactions, the direction of spontaneous reactions is determined by the increase in entropy. Engineers must consider irreversible thermodynamics when designing engines and other systems that convert energy from one form to another. Understanding how energy dissipates and how irreversibility affects efficiency is crucial for optimizing performance and minimizing waste.Moreover, irreversible thermodynamics also provides insights into biological processes. Living organisms constantly exchange energy and matter with their environment, and many of these processes are inherently irreversible. For example, metabolic reactions in cells produce waste products that cannot be converted back into their original substrates without additional energy input. This irreversibility is vital for maintaining life, as it drives the flow of energy through ecosystems and supports the complex interactions among organisms.In conclusion, irreversible thermodynamics is a critical area of study that helps us understand the natural world and the processes that govern it. By recognizing the limitations imposed by irreversibility, we can better appreciate the complexities of energy transfer, the behavior of systems away from equilibrium, and the fundamental principles that underlie both physical and biological phenomena. As we continue to explore the intricacies of thermodynamic processes, the knowledge gained from irreversible thermodynamics will undoubtedly play a pivotal role in advancing science and technology in the future.

热力学的研究是物理学和工程学中的一个基本方面,它涉及热、功、温度和能量之间的关系。在热力学的各个分支中,不可逆热力学在理解现实世界过程中发挥着至关重要的作用。与可逆热力学过程不同,可逆过程理论上可以在不对系统或环境产生净变化的情况下被逆转,而不可逆热力学则关注那些无法简单逆转的过程。这一区别至关重要,因为大多数自然过程都是不可逆的,意味着它们趋向于朝向平衡状态,并且不能自发地返回到原始状态。在不可逆热力学中,我们分析当系统受到外部力或梯度(例如温度差、压力差或浓度梯度)影响时如何随时间演变。例如,当一个热物体与一个冷物体接触时,热量从热物体流向冷物体,直到达到热平衡。这一过程是不可逆的,因为一旦热量被转移,热物体的原始状态就无法在不向系统添加能量的情况下恢复。不可逆热力学的一个关键原则是熵的概念。熵是系统中无序或随机性的度量,在不可逆过程中往往随着时间的推移而增加。根据热力学第二定律,一个孤立系统的总熵永远不会减少;它只能保持不变或增加。这一原则解释了为什么某些过程(例如混合两种不同的气体或冰的融化)是不可逆的。当这些过程发生时,系统的整体熵增加,反映出从更有序状态向更无序状态的过渡。不可逆热力学的影响超越了理论物理;它在工程、化学和环境科学等多个领域具有实际应用。例如,在化学反应中,自发反应的方向由熵的增加决定。工程师在设计发动机和其他将能量从一种形式转换为另一种形式的系统时,必须考虑不可逆热力学。理解能量如何耗散以及不可逆性如何影响效率对于优化性能和最小化浪费至关重要。此外,不可逆热力学还为生物过程提供了见解。生物体不断与环境交换能量和物质,其中许多过程本质上是不可逆的。例如,细胞中的代谢反应产生的废物无法在没有额外能量输入的情况下转化回其原始底物。这种不可逆性对维持生命至关重要,因为它驱动了生态系统中能量的流动,并支持生物体之间的复杂相互作用。总之,不可逆热力学是一个关键研究领域,帮助我们理解自然界及其支配的过程。通过认识到不可逆性所施加的限制,我们可以更好地欣赏能量转移的复杂性、偏离平衡状态的系统行为以及支配物理和生物现象的基本原则。随着我们继续探索热力学过程的复杂性,从不可逆热力学中获得的知识无疑将在未来推动科学和技术的发展。

相关单词

irreversible

irreversible详解:怎么读、什么意思、用法