gravitational acceleration

简明释义

重力加速度

英英释义

Gravitational acceleration is the acceleration of an object caused by the force of gravity acting on it.

重力加速度是由重力作用于物体所引起的加速度。

例句

1.Astronauts experience weightlessness in space because the gravitational acceleration is significantly weaker than on Earth.

宇航员在太空中体验到失重,是因为重力加速度远低于地球上的水平。

2.When designing roller coasters, engineers must consider the effects of gravitational acceleration to ensure safety and thrill.

在设计过山车时,工程师必须考虑重力加速度的影响,以确保安全和刺激感。

3.The formula for calculating the force of an object in free fall includes the value of gravitational acceleration, which is approximately 9.81 m/s² on Earth.

自由落体中计算物体受力的公式包括了重力加速度的值,地球上的值大约为9.81米/秒²。

4.The gravitational acceleration on the surface of Mars is about 3.71 m/s², which is much lower than that of Earth.

火星表面的重力加速度约为3.71米/秒²,远低于地球的水平。

5.To calculate the time it takes for an object to fall, you can use the gravitational acceleration in your equations.

要计算物体下落所需的时间,可以在方程中使用重力加速度

作文

Gravitational acceleration is a fundamental concept in physics that describes the acceleration of an object due to the force of gravity. This force is what keeps us grounded on Earth and influences the motion of celestial bodies in space. The standard value of gravitational acceleration (重力加速度) at the surface of the Earth is approximately 9.81 m/s². This means that, in the absence of air resistance, an object falling freely will increase its velocity by about 9.81 meters per second for every second it falls.Understanding gravitational acceleration (重力加速度) is crucial for various fields, including engineering, astronomy, and even everyday life. For instance, when engineers design buildings or bridges, they must consider the effects of gravitational acceleration (重力加速度) to ensure that structures can withstand the forces acting upon them. Similarly, astronauts must account for gravitational acceleration (重力加速度) when planning missions, as different celestial bodies possess varying gravitational forces.The concept of gravitational acceleration (重力加速度) also leads to fascinating observations in our universe. For example, the acceleration due to gravity on the Moon is only about 1.62 m/s², which is significantly lower than that on Earth. This difference allows astronauts to jump much higher on the lunar surface than they can on Earth. Understanding these variations helps scientists explore the potential for human habitation on other planets.Moreover, gravitational acceleration (重力加速度) plays a vital role in the orbits of planets and moons. The balance between the gravitational pull of a planet and the inertia of an orbiting body determines its path. For instance, Earth’s gravitational acceleration (重力加速度) keeps the Moon in orbit while allowing it to maintain a stable distance from our planet. This delicate balance is essential for the stability of our solar system.In addition to its scientific implications, gravitational acceleration (重力加速度) has practical applications in technology. For example, GPS systems rely on precise measurements of time and position, which are affected by gravitational acceleration (重力加速度). The satellites used in these systems must account for the differences in gravitational acceleration (重力加速度) experienced at various altitudes to provide accurate location data.In conclusion, gravitational acceleration (重力加速度) is not just a theoretical concept but a practical reality that influences many aspects of life, science, and technology. From the way we build structures to how we navigate the cosmos, understanding gravitational acceleration (重力加速度) is essential. As we continue to explore and learn more about the universe, this fundamental force will remain a key area of study, revealing new insights into the nature of reality itself.

重力加速度是物理学中的一个基本概念,描述了物体因重力作用而产生的加速度。这种力量使我们能够在地球上立足,并影响着太空中天体的运动。地球表面的标准重力加速度值约为9.81米/秒²。这意味着,在没有空气阻力的情况下,自由下落的物体每秒钟其速度将增加约9.81米。理解重力加速度对多个领域至关重要,包括工程学、天文学,甚至日常生活。例如,当工程师设计建筑物或桥梁时,他们必须考虑重力加速度的影响,以确保结构能够承受施加在其上的力量。同样,宇航员在规划任务时也必须考虑重力加速度,因为不同的天体具有不同的引力。重力加速度的概念还导致我们宇宙中一些有趣的观察。例如,月球上的重力加速度仅约为1.62米/秒²,远低于地球。这一差异使宇航员在月球表面跳得比在地球上高得多。理解这些变化有助于科学家探索其他星球上人类居住的潜力。此外,重力加速度在行星和月球的轨道中也发挥着至关重要的作用。行星的引力与围绕物体的惯性之间的平衡决定了其轨迹。例如,地球的重力加速度使月球保持在轨道上,同时允许它与我们的星球保持稳定的距离。这种微妙的平衡对我们太阳系的稳定性至关重要。除了科学意义外,重力加速度在技术应用中也发挥着重要作用。例如,GPS系统依赖于时间和位置的精确测量,而这些测量受到重力加速度的影响。这些系统所使用的卫星必须考虑在不同高度上经历的重力加速度差异,以提供准确的位置数据。总之,重力加速度不仅仅是一个理论概念,而是影响生活、科学和技术许多方面的实际现实。从我们建造结构的方式到我们如何导航宇宙,理解重力加速度是至关重要的。随着我们继续探索和学习更多关于宇宙的知识,这种基本力量将仍然是一个重要的研究领域,揭示现实本质的新见解。

相关单词

gravitational

gravitational详解:怎么读、什么意思、用法

acceleration

acceleration详解:怎么读、什么意思、用法