grashof number

简明释义

格拉肖夫数

英英释义

The Grashof number is a dimensionless number that describes the ratio of buoyancy to viscous forces in fluid dynamics, indicating the relative significance of natural convection in a fluid flow.

Grashof数是一个无量纲数,描述了流体动力学中浮力与粘性力的比率,指示自然对流在流体流动中的相对重要性。

例句

1.In this experiment, we found that a higher grashof number 格拉肖夫数 leads to increased turbulence in the fluid.

在这个实验中,我们发现更高的grashof number 格拉肖夫数 会导致流体中的湍流增加。

2.The grashof number 格拉肖夫数 can be used to predict the onset of natural convection in a vertical cylinder.

可以使用grashof number 格拉肖夫数 来预测垂直圆柱体中自然对流的发生。

3.The calculation of the grashof number 格拉肖夫数 is essential in determining the natural convection flow in a heated fluid.

计算grashof number 格拉肖夫数 对于确定加热流体中的自然对流流动至关重要。

4.When designing heat exchangers, engineers must consider the grashof number 格拉肖夫数 to optimize performance.

在设计热交换器时,工程师必须考虑grashof number 格拉肖夫数 以优化性能。

5.A low grashof number 格拉肖夫数 indicates that viscous forces dominate over buoyancy forces in fluid flow.

grashof number 格拉肖夫数 表明在流体流动中粘性力占主导地位。

作文

The study of fluid mechanics is essential in understanding the behavior of fluids in various engineering applications. One important dimensionless number that plays a crucial role in this field is the Grashof number. The Grashof number (Gr) is a dimensionless quantity that measures the ratio of buoyancy to viscous forces in a fluid. It is particularly significant in natural convection scenarios, where the movement of fluid is driven by density differences caused by temperature variations. In essence, the Grashof number helps predict the flow patterns and stability of fluid motion in different thermal environments.To grasp the significance of the Grashof number, it is essential to understand its formulation. The Grashof number is defined mathematically as Gr = (g * β * ΔT * L³) / ν², where g is the acceleration due to gravity, β is the coefficient of volumetric thermal expansion, ΔT is the temperature difference across the fluid layer, L is the characteristic length, and ν is the kinematic viscosity of the fluid. Each of these parameters contributes to the overall behavior of the fluid under varying thermal conditions.In practical applications, the Grashof number serves as a critical indicator for engineers and scientists when designing systems involving heat transfer and fluid flow. For instance, in building design, understanding the Grashof number can help predict how air will circulate within a room when heating or cooling systems are employed. A high Grashof number indicates that buoyancy forces dominate over viscous forces, leading to more vigorous convection currents. Conversely, a low Grashof number suggests that viscous forces are more significant, resulting in slower and more stable fluid motion.The implications of the Grashof number extend beyond just theoretical studies; they have real-world applications in various fields such as meteorology, oceanography, and even biomedical engineering. For example, understanding natural convection in the atmosphere can help meteorologists predict weather patterns, while in oceanography, it can aid in modeling ocean currents and their impacts on climate change.Moreover, the Grashof number is also used in the analysis of heat exchangers, where efficient heat transfer is crucial for energy conservation. Engineers often use the Grashof number to optimize the design of heat exchangers by ensuring that the flow regime is conducive to effective heat transfer, thus improving the overall efficiency of thermal systems.In conclusion, the Grashof number is a fundamental concept in fluid mechanics that provides valuable insights into the behavior of fluids in response to thermal gradients. Its ability to characterize the balance between buoyancy and viscous forces makes it an indispensable tool for engineers and scientists alike. By understanding and applying the principles behind the Grashof number, we can enhance our designs and predictions in a wide array of practical applications, ultimately leading to better performance and efficiency in thermal systems.

流体力学的研究对于理解流体在各种工程应用中的行为至关重要。在这个领域中,一个重要的无量纲数是Grashof数Grashof数(Gr)是一个无量纲量,它衡量了流体中浮力与粘性力的比率。它在自然对流场景中尤其重要,在这些情况下,流体的运动是由温度变化引起的密度差异驱动的。总之,Grashof数帮助预测不同热环境中流动模式和流体运动的稳定性。要理解Grashof数的重要性,首先需要了解其公式。Grashof数的数学定义为Gr = (g * β * ΔT * L³) / ν²,其中g是重力加速度,β是体积热膨胀系数,ΔT是流体层的温度差,L是特征长度,ν是流体的运动粘度。这些参数中的每一个都对流体在不同热条件下的整体行为产生影响。在实际应用中,Grashof数作为工程师和科学家设计涉及热传递和流体流动系统时的关键指标。例如,在建筑设计中,理解Grashof数可以帮助预测当使用供暖或制冷系统时空气在房间内如何循环。高Grashof数表明浮力作用主导于粘性作用,导致更强烈的对流流动。相反,低Grashof数则表明粘性作用更为显著,导致流体运动缓慢且更加稳定。Grashof数的意义不仅限于理论研究;它在气象学、海洋学甚至生物医学工程等多个领域都有实际应用。例如,理解大气中的自然对流可以帮助气象学家预测天气模式,而在海洋学中,它可以帮助建模海洋洋流及其对气候变化的影响。此外,Grashof数还用于热交换器的分析,热交换器的高效热传递对于节能至关重要。工程师常常利用Grashof数来优化热交换器的设计,以确保流动状态有利于有效的热传递,从而提高热系统的整体效率。总之,Grashof数是流体力学中的一个基本概念,它提供了关于流体在热梯度响应下行为的宝贵见解。它能够表征浮力与粘性力之间的平衡,使其成为工程师和科学家不可或缺的工具。通过理解和应用Grashof数背后的原理,我们可以增强在广泛的实际应用中的设计和预测,最终提高热系统的性能和效率。