adiabatic process
简明释义
绝热过程
英英释义
例句
1.In a perfect gas, an expansion that occurs without heat exchange is called an adiabatic process (绝热过程).
在理想气体中,发生的无热交换的膨胀称为adiabatic process(绝热过程)。
2.During the adiabatic process (绝热过程), the temperature of a gas can change without any heat transfer.
在adiabatic process(绝热过程)中,气体的温度可以在没有任何热量传递的情况下发生变化。
3.An example of an adiabatic process (绝热过程) is the rapid compression of air in a piston.
一个adiabatic process(绝热过程)的例子是空气在活塞中快速压缩。
4.The adiabatic process (绝热过程) is important in understanding how refrigerators work.
理解冰箱工作原理时,adiabatic process(绝热过程)是很重要的。
5.The adiabatic process (绝热过程) is often used in thermodynamic cycles like the Carnot cycle.
在卡诺循环等热力学循环中,通常使用adiabatic process(绝热过程)。
作文
In the realm of thermodynamics, one of the fundamental concepts that students and professionals encounter is the adiabatic process. This term refers to a thermodynamic process in which there is no heat transfer into or out of the system. In simpler terms, during an adiabatic process, the system is perfectly insulated from its surroundings, meaning that any change in the internal energy of the system is solely due to work done on or by the system. Understanding this concept is crucial for various applications in engineering and physics.To illustrate the significance of the adiabatic process, consider the example of a gas contained within a piston. When the piston compresses the gas rapidly, the gas does work on the piston. Because this compression occurs quickly, there is insufficient time for heat to flow in or out of the gas. As a result, the temperature of the gas increases due to the work done on it. This scenario exemplifies an adiabatic process, where the increase in internal energy leads to an increase in temperature without any heat exchange with the environment.Another important aspect of the adiabatic process is its relationship with the laws of thermodynamics. According to the first law of thermodynamics, the change in internal energy of a system is equal to the heat added to the system minus the work done by the system. In an adiabatic process, since there is no heat exchange (Q = 0), the equation simplifies to ΔU = -W. This means that all the work done on the system results in a change in internal energy, which is critical when analyzing processes in engines and refrigerators.The adiabatic process also plays a significant role in natural phenomena. For instance, when air rises in the atmosphere, it expands and cools. If this expansion occurs without any heat exchange with the surrounding air, it is considered an adiabatic process. This principle helps explain why temperatures decrease with altitude in the atmosphere. The understanding of these processes is vital for meteorology and climate science as it aids in predicting weather patterns and understanding atmospheric dynamics.Furthermore, the concept of adiabatic processes extends beyond ideal gases. Real gases can also exhibit adiabatic processes, although they may deviate from the ideal behavior under certain conditions, such as high pressures or low temperatures. Engineers take these deviations into account when designing systems like compressors and turbines to ensure efficiency and reliability.In conclusion, the adiabatic process is a crucial concept in thermodynamics that describes processes without heat transfer. Its implications span various fields, including engineering, meteorology, and environmental science. By grasping the principles behind the adiabatic process, one can better understand how energy is transformed and conserved in different systems, paving the way for innovations and advancements in technology. As we continue to explore the complexities of our universe, the study of adiabatic processes will remain a key area of focus for scientists and engineers alike.
在热力学领域,学生和专业人士所遇到的基本概念之一是绝热过程。这个术语指的是一个热力学过程,在这个过程中系统与外界之间没有热量传递。简单来说,在绝热过程中,系统与其周围环境完全隔绝,这意味着系统内部能量的任何变化仅仅是由于对系统做功或由系统做功造成的。理解这一概念对于工程和物理学中的各种应用至关重要。为了说明绝热过程的重要性,可以考虑一个包含气体的活塞的例子。当活塞快速压缩气体时,气体对活塞做功。由于这种压缩发生得很快,因此没有足够的时间让热量流入或流出气体。因此,由于对气体做功,气体的温度会升高。这个场景展示了一个绝热过程,在这个过程中,内部能量的增加导致温度的升高,而没有与环境进行热量交换。绝热过程的另一个重要方面是它与热力学定律的关系。根据热力学第一定律,系统内部能量的变化等于加到系统上的热量减去系统所做的功。在绝热过程中,由于没有热量交换(Q = 0),方程简化为ΔU = -W。这意味着施加在系统上的所有功都导致内部能量的变化,这在分析发动机和冰箱中的过程时至关重要。绝热过程在自然现象中也发挥着重要作用。例如,当空气在大气中上升时,它会膨胀并冷却。如果这种膨胀是在没有与周围空气进行热量交换的情况下发生的,那么它被视为绝热过程。这一原理有助于解释为什么随着海拔高度的增加,温度会下降。理解这些过程对于气象学和气候科学至关重要,因为它有助于预测天气模式和理解大气动力学。此外,绝热过程的概念不仅限于理想气体。实际气体也可以表现出绝热过程,尽管在某些条件下,例如高压或低温,它们可能会偏离理想行为。工程师在设计压缩机和涡轮机等系统时,会考虑这些偏差,以确保效率和可靠性。总之,绝热过程是热力学中的一个关键概念,描述了没有热量传递的过程。它的影响遍及各个领域,包括工程、气象学和环境科学。通过掌握绝热过程背后的原理,人们可以更好地理解不同系统中能量是如何转化和保存的,为技术创新和进步铺平道路。随着我们继续探索宇宙的复杂性,研究绝热过程将始终是科学家和工程师关注的重点领域。
相关单词