spline
简明释义
n. 花键;齿条;曲线尺;塞缝片
vt. 开键槽;用花键联接
复 数 s p l i n e s
第 三 人 称 单 数 s p l i n e s
现 在 分 词 s p l i n i n g
过 去 式 s p l i n e d
过 去 分 词 s p l i n e d
英英释义
单词用法
三次样条;三次样条曲线(线图);三次仿样函数 | |
样条函数 |
同义词
曲线 | The spline is used to create smooth curves in computer graphics. | 样条用于在计算机图形中创建平滑曲线。 |
反义词
线性的 | 线性函数比样条函数更容易分析。 | ||
常数的 | In a constant rate scenario, the output does not change over time, unlike a spline curve. | 在常数速率的情况下,输出不会随时间变化,这与样条曲线不同。 |
例句
1.This paper is presented a spline boundary element Method on elasticity.
本文对弹性力学问题提出一个样条边界元法。
2.Applying the principle of minimum total potential energy, the spline subdomain method of folded plate structures is derived.
应用最小势能原理,建立了折板结构分析的样条子域法。
3.This method draws a cardinal spline that passes through each point in the array.
此方法绘制经过数组中每个点的基数样条。
4.The method has many USES, such as the design of industry shaping and the parametric deform of spline-curve.
这种方法有很多的用途,可以用于工业造型设计,也可以用于曲线的参数化变形。
5.The thesis simulates the process of the spline forming by the FEM software.
应用有限元分析软件,对花键轴的齿形成形过程进行模拟。
6.The spline shafts is a important part of the machine.
花键轴是机械中广泛使用的重要零件之一。
7.The method of using cubic spline function as fan characteristic curve fitting is introduced.
介绍了用三次样条函数作通风机性能曲线拟合的方法。
8.The strength is calculated by the transfer matrix method and stability is computed by spline energy method.
强度分析采用迁移矩阵法,稳定性分析采用样条能量法。
9.Splines Vs subdivision: The benefits of subdivision modelling over a spline-based workflow.
细分建模对基于样条的工作流的好处。
10.The animation software allows you to adjust the spline curves for more realistic motion.
该动画软件允许您调整spline曲线,以实现更逼真的运动效果。
11.The engineer used a spline to create a smooth curve in the CAD design.
工程师使用spline在CAD设计中创建了一个平滑的曲线。
12.In computer graphics, a spline is often used for modeling complex shapes.
在计算机图形学中,spline常用于建模复杂形状。
13.A spline joint is essential for connecting two parts of the machine securely.
spline接头对于安全连接机器的两个部分是必不可少的。
14.The designer opted for a cubic spline to achieve a higher degree of smoothness.
设计师选择了三次spline以达到更高的平滑度。
作文
In the world of engineering and computer graphics, the term spline refers to a mathematical function used to create smooth curves. It plays a crucial role in various fields, including animation, CAD (Computer-Aided Design), and even in the design of automobiles and aircraft. Understanding the concept of spline is essential for anyone interested in these areas because it allows for precise control over shapes and forms, making it easier to visualize and manipulate complex designs.Historically, the word spline comes from the flexible strips of wood that draftsmen used to draw smooth curves. These strips were known as spline because they could be bent into any desired shape while being held at certain points. This idea has been translated into modern mathematics where spline functions are used to achieve similar results in digital environments.There are different types of spline functions, such as linear splines, quadratic splines, and cubic splines. Each type offers varying degrees of flexibility and smoothness. For instance, cubic splines are particularly popular because they provide a good balance between smoothness and computational efficiency. They are defined by piecewise polynomial functions, which means that the curve can change its polynomial expression at certain points, allowing for intricate designs without sacrificing smoothness.In computer graphics, the application of splines is widespread. Animators use spline curves to create fluid motion paths for characters and objects. By defining keyframes and using spline interpolation, animators can achieve realistic movements that mimic the natural flow of motion. This technique is not only limited to animation but also extends to video game development, where spline paths guide characters along specific routes, enhancing gameplay experience.Furthermore, in CAD software, engineers and designers utilize splines to create intricate surfaces and components. The ability to manipulate spline curves allows for precise modeling of parts that require high levels of detail. Whether it's designing an ergonomic chair or the sleek body of a sports car, spline functions enable designers to achieve their vision with accuracy.Understanding spline technology is also vital for those involved in data visualization. In this context, spline interpolation helps in creating smooth curves that represent trends in data. For instance, when plotting a graph, using spline techniques can make the data representation more visually appealing and easier to interpret. This is particularly useful in fields like finance, where understanding market trends is crucial.In conclusion, the term spline encompasses a significant concept in various technical fields. Its origins in drafting have evolved into a powerful mathematical tool that enhances the capabilities of engineers, animators, and designers alike. As technology continues to advance, the importance of mastering spline functions will only grow, making it an essential topic for students and professionals in STEM disciplines. By grasping the principles behind splines, individuals can unlock new possibilities in design and innovation, ultimately contributing to the evolution of technology and creativity in our world.
在工程和计算机图形学的世界中,术语spline指的是用于创建平滑曲线的数学函数。它在多个领域中发挥着至关重要的作用,包括动画、计算机辅助设计(CAD),甚至汽车和飞机的设计。理解spline的概念对于任何对这些领域感兴趣的人来说都是必不可少的,因为它允许对形状和形式进行精确控制,使得可视化和操控复杂设计变得更加容易。历史上,spline这个词来源于制图师用来绘制平滑曲线的柔性木条。这些木条被称为spline,因为它们可以在保持某些点的同时弯曲成所需的形状。这一理念被转化为现代数学,在数字环境中使用spline函数达到类似的效果。有不同类型的spline函数,例如线性spline、二次spline和三次spline。每种类型提供不同程度的灵活性和平滑度。例如,三次spline特别受欢迎,因为它们在平滑度和计算效率之间提供了良好的平衡。它们由分段多项式函数定义,这意味着曲线可以在某些点改变其多项式表达式,从而在不牺牲平滑度的情况下实现复杂设计。在计算机图形学中,spline的应用非常广泛。动画师使用spline曲线为角色和物体创建流畅的运动路径。通过定义关键帧并使用spline插值,动画师可以实现逼真的运动,模拟自然运动的流动。这种技术不仅限于动画,还扩展到视频游戏开发,其中spline路径引导角色沿特定路线移动,增强游戏体验。此外,在CAD软件中,工程师和设计师利用spline创建复杂的表面和组件。操控spline曲线的能力使得高细节部件的建模变得可能。无论是设计符合人体工程学的椅子还是运动跑车的流线型车身,spline函数使设计师能够准确实现他们的愿景。理解spline技术对于那些参与数据可视化的人也至关重要。在这种情况下,spline插值有助于创建代表数据趋势的平滑曲线。例如,在绘制图表时,使用spline技术可以使数据表示更加美观,更易于解释。这在金融等领域尤为重要,因为理解市场趋势至关重要。总之,术语spline涵盖了多个技术领域的重要概念。它在制图中的起源已经演变成一种强大的数学工具,增强了工程师、动画师和设计师的能力。随着技术的不断进步,掌握spline函数的重要性只会增加,使其成为STEM学科学生和专业人士的一个重要主题。通过掌握spline背后的原理,个人可以解锁设计和创新的新可能性,最终推动我们世界中技术和创造力的演变。