relative maximum or minimum

简明释义

相对极大或极小

英英释义

A relative maximum is a point on a graph where the function value is higher than the values of the function at nearby points, while a relative minimum is a point where the function value is lower than the values at nearby points.

相对最大值是图形上的一个点,在该点的函数值高于附近点的函数值,而相对最小值是一个点,在该点的函数值低于附近点的函数值。

例句

1.The graph shows several points where the function has relative maximum or minimum 相对最大值或最小值 values.

图表显示了函数具有多个相对最大值或最小值的点。

2.When analyzing data, identifying a relative maximum or minimum 相对最大值或最小值 can help in making predictions.

在分析数据时,识别相对最大值或最小值可以帮助做出预测。

3.In calculus, we often find the relative maximum or minimum 相对最大值或最小值 of a function by taking its derivative.

在微积分中,我们通常通过求函数的导数来找到其相对最大值或最小值

4.To optimize the design, we need to calculate the relative maximum or minimum 相对最大值或最小值 of the area.

为了优化设计,我们需要计算面积的相对最大值或最小值

5.The stock price reached a relative maximum or minimum 相对最大值或最小值 last week, indicating a potential reversal.

上周股票价格达到了一个相对最大值或最小值,这表明可能会出现反转。

作文

In the world of mathematics, particularly in calculus, the concepts of relative maximum or minimum play a crucial role in understanding the behavior of functions. A relative maximum or minimum refers to points on a graph where the function reaches its highest or lowest values within a certain interval. This is different from an absolute maximum or minimum, which considers the entire domain of the function. Understanding these concepts can provide valuable insights into various real-world applications, such as economics, engineering, and even biology.To illustrate, let’s consider a simple function, f(x) = -x² + 4x. This quadratic function opens downwards, forming a parabola. To find the relative maximum or minimum, we first need to determine the critical points by taking the derivative of the function and setting it to zero. The derivative, f'(x) = -2x + 4, when set to zero gives us x = 2. This point will help us identify whether it is a relative maximum or minimum.Next, we can use the second derivative test to classify this critical point. The second derivative, f''(x) = -2, is negative, indicating that the function is concave down at x = 2. Therefore, we conclude that f(2) = -2² + 4(2) = 4 is a relative maximum or minimum. This means that within the interval around x = 2, there are no other higher points on the graph.Understanding relative maximum or minimum points is not only important in pure mathematics but also has practical implications in various fields. For example, in economics, businesses often seek to maximize their profits or minimize their costs. By analyzing cost and revenue functions, companies can identify the relative maximum or minimum points, allowing them to make informed decisions about pricing and production levels.In engineering, optimizing designs often involves finding relative maximum or minimum values for stress, strain, or efficiency. Engineers utilize these mathematical principles to ensure that structures can withstand loads without failure, ultimately leading to safer and more efficient designs.Additionally, in biology, researchers may study population dynamics using models that include relative maximum or minimum points to determine the carrying capacity of ecosystems or the impact of environmental changes on species survival. By identifying these critical points, scientists can predict trends and make recommendations for conservation efforts.In conclusion, the concept of relative maximum or minimum is fundamental in calculus and serves as a powerful tool in various disciplines. Whether one is analyzing a mathematical function, optimizing business strategies, designing safe structures, or studying ecological systems, understanding how to identify and interpret relative maximum or minimum points is essential. Mastering this concept not only enhances mathematical skills but also equips individuals with the analytical tools needed to tackle complex problems in real life. As we continue to explore the vast applications of these mathematical principles, the significance of relative maximum or minimum will undoubtedly remain a vital area of study and application.

在数学的世界中,特别是在微积分中,相对最大值或最小值的概念在理解函数行为方面起着至关重要的作用。相对最大值或最小值指的是图形上的点,在这些点上,函数在某个区间内达到了最高或最低值。这与绝对最大值或最小值不同,后者考虑的是函数的整个定义域。理解这些概念可以为各种现实世界的应用提供宝贵的见解,例如经济学、工程学甚至生物学。为了说明这一点,让我们考虑一个简单的函数,f(x) = -x² + 4x。这个二次函数向下开口,形成一个抛物线。要找到相对最大值或最小值,我们首先需要通过求导并将其设置为零来确定临界点。导数f'(x) = -2x + 4,设为零后得出x = 2。这个点将帮助我们确定它是相对最大值或最小值。接下来,我们可以使用二阶导数测试来对这个临界点进行分类。二阶导数f''(x) = -2是负的,这表明在x = 2时函数是向下凹的。因此,我们得出结论,f(2) = -2² + 4(2) = 4是相对最大值或最小值。这意味着在x = 2附近的区间内,图形上没有其他更高的点。理解相对最大值或最小值点不仅在纯数学中重要,而且在各个领域也具有实际意义。例如,在经济学中,企业通常寻求最大化利润或最小化成本。通过分析成本和收益函数,公司可以识别出相对最大值或最小值点,从而做出有关定价和生产水平的明智决策。在工程学中,优化设计往往涉及寻找应力、应变或效率的相对最大值或最小值。工程师利用这些数学原理确保结构能够承受负荷而不发生失效,最终导致更安全、更高效的设计。此外,在生物学中,研究人员可能会使用包含相对最大值或最小值点的模型研究种群动态,以确定生态系统的承载能力或环境变化对物种生存的影响。通过识别这些关键点,科学家可以预测趋势并提出保护措施。总之,相对最大值或最小值的概念在微积分中是基础,并且在各个学科中都是一种强大的工具。无论是分析数学函数、优化商业策略、设计安全结构还是研究生态系统,了解如何识别和解释相对最大值或最小值点都是必不可少的。掌握这一概念不仅增强了数学技能,还为个人提供了解决现实生活中复杂问题所需的分析工具。随着我们继续探索这些数学原理的广泛应用,相对最大值或最小值的重要性无疑将继续成为一个重要的研究和应用领域。

相关单词

relative

relative详解:怎么读、什么意思、用法

maximum

maximum详解:怎么读、什么意思、用法

or

or详解:怎么读、什么意思、用法

minimum

minimum详解:怎么读、什么意思、用法