biofilms

简明释义

[ˈbaɪəʊfɪlmz][ˈbaɪoʊˌfɪlmz]

n. 生物膜(biofilm 的复数)

英英释义

Biofilms are complex communities of microorganisms that adhere to surfaces, often encased in a protective matrix of extracellular polymeric substances.

生物膜是附着在表面上的微生物复杂群落,通常被包裹在一种保护性的细胞外聚合物基质中。

单词用法

microbial biofilms

微生物生物膜

dental biofilms

牙科生物膜

biofilm-related infections

与生物膜相关的感染

biofilm management

生物膜管理

biofilm communities

生物膜群落

prevent biofilm formation

防止生物膜形成

control biofilm growth

控制生物膜生长

study biofilm characteristics

研究生物膜特性

analyze biofilm structure

分析生物膜结构

biofilm resistance

生物膜抵抗力

同义词

microbial films

微生物膜

Microbial films can form on various surfaces in aquatic environments.

微生物膜可以在水环境中的各种表面上形成。

biofouling

生物污垢

Biofouling is a significant issue in marine industries.

生物污垢是海洋工业中的一个重大问题。

slime layers

粘液层

Slime layers are often found in natural water bodies.

粘液层通常存在于自然水体中。

反义词

planktonic

浮游生物

Planktonic bacteria are typically found suspended in water rather than attached to surfaces.

浮游细菌通常在水中悬浮,而不是附着在表面上。

free-living

自由生活的

Free-living organisms can thrive independently without forming a biofilm.

自由生活的生物可以独立生存,而不形成生物膜。

例句

1.Since plastic shower heads appear to "load up" with more bacteria-rich biofilms, metal shower heads may be a good alternative, said Professor Pace.

佩斯教授说道,“因为塑胶喷头‘藏’有更多装载大量细菌的生物膜,所以金属喷头不失为(淋浴时)一个好的选择。”

2.These microscopic layers of deposits containing bacteria are known as biofilms and they are found on most surfaces and objects.

这些含有细菌的微小沉积层被称为生物膜,它们存在于大多数表面和物体上。

3.Objective: To investigate the effects of gallic acid against Candida albicans biofilms in vitro.

目的:研究没食子酸对体外白念珠菌生物膜的影响。

4.Research has revealed the sources of infection of biofilms in lesions of refractory fungal infections.

研究发现在难治性真菌感染的病灶中大多存在着生物膜的感染源。

5.The dangers arising from biofilms are hereby often underestimated.

而通常来自生物膜的危险则会被低估。

6.Biofilms are hard to control by the nature of the beasts.

本质上来说生物膜很难收到控制。

7.He engineered a type of virus, known as a phage, to destroy biofilms and sabotage their defenses against antibiotics.

他设计一种病毒,也就是噬菌体,用来破坏生物膜,攻破细菌抵抗抗生素的防御体系。

8.The bane of biofilms: Bacteria bound together in a protective matrix tend to resist viral attack.

生物膜的祸根:细菌粘合到一起形成一个防护型的整体,可以抵抗病毒的攻击。

9.Once biofilms become attached to the surfaces of medical devices, they are extremely difficult to expunge.

生物膜一旦粘附到医疗器械表面,去除将变的非常困难。

10.Cleaning agents must be effective against biofilms 生物膜 to ensure proper sanitation in kitchens.

清洁剂必须对biofilms 生物膜有效,以确保厨房的适当卫生。

11.Researchers are studying how biofilms 生物膜 form on medical devices to prevent infections.

研究人员正在研究如何在医疗设备上形成biofilms 生物膜以防止感染。

12.In natural ecosystems, biofilms 生物膜 play a crucial role in nutrient cycling.

在自然生态系统中,biofilms 生物膜在养分循环中发挥着至关重要的作用。

13.The presence of biofilms 生物膜 in water pipes can lead to serious contamination issues.

水管中存在的biofilms 生物膜可能导致严重的污染问题。

14.Aquatic environments often have diverse biofilms 生物膜 that support various forms of life.

水生环境通常拥有多样的biofilms 生物膜,支持各种生命形式。

作文

In recent years, the study of biofilms has gained significant attention in various fields, including microbiology, medicine, and environmental science. A biofilm is defined as a complex aggregation of microorganisms that adhere to surfaces, forming a protective and structured community. These microorganisms can include bacteria, fungi, algae, and protozoa, which coexist in a self-produced matrix of extracellular polymeric substances (EPS). This matrix not only provides structural support but also enhances the survival of the microorganisms within the biofilm. One of the most intriguing aspects of biofilms is their ability to form on virtually any surface, whether it be natural or artificial. For example, biofilms can develop on rocks in rivers, on the teeth in our mouths, or even on medical devices such as catheters and implants. The formation of a biofilm typically begins with the attachment of free-floating microorganisms to a surface, followed by cell division and the production of EPS, which helps to anchor the cells in place. Over time, this process leads to the development of a dense and complex structure that can be difficult to eradicate.The presence of biofilms can have both beneficial and detrimental effects. In nature, biofilms play a crucial role in nutrient cycling and the degradation of organic matter. They contribute to the stability of ecosystems by providing habitat for various organisms and facilitating biochemical processes. However, in clinical settings, the formation of biofilms on medical devices can lead to serious infections that are often resistant to antibiotics. This resistance is largely due to the protective nature of the biofilm matrix, which can hinder the penetration of antimicrobial agents.Research into biofilms has revealed that they exhibit unique behaviors compared to planktonic (free-floating) bacteria. For instance, biofilms can demonstrate increased resistance to environmental stresses, such as changes in temperature, pH, and the presence of toxic substances. Additionally, the close proximity of cells within a biofilm can facilitate horizontal gene transfer, allowing for the rapid spread of antibiotic resistance genes among microbial populations.To combat the challenges posed by biofilms, scientists are exploring various strategies, including the development of anti-biofilm coatings for medical devices and the use of bacteriophages to target specific bacterial species within a biofilm. Furthermore, understanding the molecular mechanisms underlying biofilm formation and dispersal can provide insights into how to disrupt these communities effectively.In conclusion, biofilms are fascinating and complex structures that play a vital role in many ecological and clinical contexts. Their ability to thrive in diverse environments and resist treatment poses significant challenges, but ongoing research continues to unravel their mysteries. As we deepen our understanding of biofilms, we can better harness their benefits while mitigating their risks, ultimately leading to improved health outcomes and environmental management.

近年来,生物膜的研究在微生物学、医学和环境科学等多个领域引起了显著关注。生物膜被定义为一群复杂的微生物聚集体,它们附着在表面上,形成一个保护性和结构化的社区。这些微生物可以包括细菌、真菌、藻类和原生动物,它们在自我产生的细胞外聚合物物质(EPS)基质中共存。这个基质不仅提供结构支持,还增强了微生物在生物膜中的生存能力。生物膜最吸引人的一个方面是它们能够在几乎任何表面上形成,无论是自然的还是人工的。例如,生物膜可以在河流中的岩石上、我们口腔中的牙齿上,甚至在医疗设备如导尿管和植入物上发展。生物膜的形成通常始于自由漂浮的微生物附着在表面上,随后细胞分裂并产生EPS,这有助于将细胞固定在位。随着时间的推移,这一过程导致形成一种密集且复杂的结构,这种结构可能难以根除。生物膜的存在可能带来有益和有害的影响。在自然界中,生物膜在养分循环和有机物降解中发挥着至关重要的作用。它们通过为各种生物提供栖息地和促进生化过程来帮助稳定生态系统。然而,在临床环境中,医疗设备上的生物膜形成可能导致严重的感染,这些感染通常对抗生素具有耐药性。这种耐药性主要是由于生物膜基质的保护性质,它可以阻碍抗微生物药物的渗透。对生物膜的研究表明,它们表现出与悬浮(自由漂浮)细菌不同的独特行为。例如,生物膜可以表现出对环境压力(如温度、pH值变化和有毒物质存在)的增强抵抗力。此外,生物膜内细胞的紧密接触可以促进水平基因转移,从而使抗生素耐药基因在微生物群体中快速传播。为了应对生物膜带来的挑战,科学家们正在探索各种策略,包括开发用于医疗设备的抗生物膜涂层以及使用噬菌体靶向生物膜内特定细菌种类。此外,理解生物膜形成和扩散的分子机制可以提供有效破坏这些社区的见解。总之,生物膜是迷人且复杂的结构,在许多生态和临床背景中发挥着至关重要的作用。它们在多样环境中生存和抵抗治疗的能力带来了重大挑战,但持续的研究不断揭示它们的奥秘。随着我们对生物膜理解的加深,我们可以更好地利用它们的好处,同时减轻它们的风险,最终改善健康结果和环境管理。