chirality
简明释义
n. 手性(空间的螺旋特性);偏光力
英英释义
Chirality is a property of asymmetry in which an object or system cannot be superimposed on its mirror image. | 手性是一种不对称的属性,其中一个物体或系统无法与其镜像重叠。 |
单词用法
光学手性 | |
手性中心 | |
手性分子 | |
药物中的手性 | |
分析手性 | |
手性与立体化学 |
同义词
手性 | The concept of handedness is crucial in understanding molecular interactions. | 手性的概念在理解分子相互作用中至关重要。 | |
不对称性 | Asymmetry plays a significant role in the properties of chiral molecules. | 不对称性在手性分子的性质中起着重要作用。 |
反义词
无手性 | The molecule is achiral, meaning it does not have a handedness. | 该分子是无手性的,这意味着它没有手性特征。 |
例句
1.The fatty acids have no chirality; their mirror image is the same molecule.
脂肪酸没有手性;它们的镜像分子就是自己。
2.Origin Of Chirality In The Molecules Of Life: A Revision From Awareness To The Current Theories And Perspectives Of This Unsolved Problem.
生命分子中手征起源,从知晓到当前实验:前理论与现理论的修订,此未解决问题的透视。
3.Effect of chirality and permittivity on the reflection and transmission was discussed.
讨论了不同情形下手征参数和介电常数对反射和透射特性的影响。
4.Chirality is one of the most important factors which must be considered in the study of the structure-activity relationship of radiopharmaceuticals.
手性是研究受体放射性药物构效关系时必须考虑的因素之一。
5.D-cysteine hydrochloride monohydrate is chirality medicine, mainly used for midbody of the third-generation antibiotic drug-cefminox sodium.
半胱氨酸盐是手性药物,主要是第三代头孢抗生素药物—头孢米诺钠的重要中间体。
6.But he does think that other chiral structures could find application in spintronics - if chirality is found to be the mechanism behind the filtering, that is.
但他确实认为可能发现其他的手性结构来应用于自旋电子学应用中,前提是确认手征性就是自旋过滤发生的机制。
7.The applications to chirality separation, sensor, solid phase extraction and pervaporation are described, and the problems and progress in this field are discussed.
评述了分子印迹膜在手性化合物的分离、膜传感器、固相萃取、渗透汽化等方面的应用研究进展。
8.The optical activity of a molecule is not determined by its chirality.
旋光性不是由手性决定的,因为手性是人为抽象出的一种概念。
9.The calculation results show that the EA is a new optical stereoisomer and whose great photosensitivity could be related to the chirality of EA molecules.
计算结果表明所制得的痂囊腔菌素A是一种新的光学活性对映体,由此推测痂囊腔菌素A的高光敏活性可能与手性结构特征有关。
10.The concept of chirality is crucial in organic chemistry, as it explains why certain molecules can exist in two different forms.
在有机化学中,手性的概念至关重要,因为它解释了为什么某些分子可以以两种不同的形式存在。
11.In the field of materials science, understanding chirality can lead to the development of new materials with unique properties.
在材料科学领域,理解手性可以导致新材料的开发,这些材料具有独特的性能。
12.The chirality of a molecule can affect its interaction with biological systems, making it an important factor in drug design.
分子的手性会影响其与生物系统的相互作用,这使其成为药物设计中的一个重要因素。
13.Pharmaceutical companies often focus on the chirality of drugs because one enantiomer may be effective while the other could be harmful.
制药公司通常关注药物的手性,因为一种对映体可能有效,而另一种可能有害。
14.Researchers are studying the chirality of amino acids to understand the origins of life on Earth.
研究人员正在研究氨基酸的手性,以理解地球上生命的起源。
作文
Chirality is a concept that plays a crucial role in the field of chemistry and biology. It refers to the property of a molecule that makes it non-superimposable on its mirror image. This means that two chiral molecules can exist as mirror images of each other, similar to how our left and right hands are mirror images but cannot be perfectly aligned. The term chirality (手性) originates from the Greek word 'cheir', meaning hand, which aptly describes this phenomenon. In the realm of organic chemistry, chirality is often associated with the presence of a carbon atom that is bonded to four different groups. This unique arrangement allows for the existence of two distinct stereoisomers, known as enantiomers. These enantiomers can have drastically different properties, especially in biological systems. For instance, one enantiomer of a drug may be therapeutic, while its mirror image could be harmful or even lethal. This highlights the importance of chirality (手性) in pharmaceutical development, where the specific three-dimensional arrangement of atoms can determine the efficacy and safety of a medication.Moreover, chirality (手性) is not limited to chemistry; it extends into various scientific fields, including physics and materials science. In physics, certain particles exhibit chirality (手性), influencing their interactions and behaviors under different conditions. In materials science, the chirality (手性) of nanomaterials can affect their optical and electronic properties, leading to advancements in technology such as sensors and solar cells.The implications of chirality (手性) are profound, particularly in the context of life itself. Biological molecules, such as amino acids and sugars, are inherently chiral. For example, all amino acids used in protein synthesis are L-enantiomers, while sugars are typically D-enantiomers. This homochirality is essential for the proper functioning of biological systems and is thought to be a fundamental characteristic of life. The origin of this preference for one enantiomer over another remains a topic of research and debate among scientists.In conclusion, chirality (手性) is a vital concept that influences various aspects of science and technology. Its significance in chemistry, biology, and materials science underscores the need for a deeper understanding of molecular structures and their interactions. As research continues to unfold, the study of chirality (手性) may lead to new discoveries and innovations, particularly in the development of more effective and safer pharmaceuticals. Embracing the intricacies of chirality (手性) not only enriches our comprehension of the natural world but also paves the way for advancements that could transform our lives.
手性是一个在化学和生物学领域中起着至关重要作用的概念。它指的是一种分子的特性,使其与其镜像不可重叠。这意味着两个手性分子可以作为彼此的镜像存在,类似于我们的左手和右手是镜像但无法完美对齐。术语chirality(手性)源自希腊词'cheir',意思是手,这恰好描述了这一现象。在有机化学领域,手性通常与一个碳原子的存在相关,该碳原子与四个不同的基团相连。这种独特的排列允许存在两种不同的立体异构体,称为对映体。这些对映体可能具有截然不同的性质,尤其是在生物系统中。例如,某种药物的一种对映体可能具有治疗效果,而其镜像可能有害甚至致命。这突显了在制药开发中chirality(手性)的重要性,其中原子的特定三维排列可以决定药物的有效性和安全性。此外,chirality(手性)不仅限于化学;它还扩展到物理学和材料科学等多个科学领域。在物理学中,某些粒子表现出chirality(手性),影响它们在不同条件下的相互作用和行为。在材料科学中,纳米材料的chirality(手性)可以影响其光学和电子特性,从而推动传感器和太阳能电池等技术的进步。chirality(手性)的影响深远,特别是在生命本身的背景下。生物分子,如氨基酸和糖,固有地具有手性。例如,所有用于蛋白质合成的氨基酸都是L-对映体,而糖通常是D-对映体。这种单一手性对于生物系统的正常功能至关重要,被认为是生命的基本特征之一。这种对一种对映体的偏好而非另一种的起源仍然是科学家们研究和争论的话题。总之,chirality(手性)是一个影响科学和技术各个方面的重要概念。它在化学、生物学和材料科学中的重要性凸显了深入理解分子结构及其相互作用的必要性。随着研究的不断展开,chirality(手性)的研究可能会导致新的发现和创新,特别是在开发更有效和安全的药物方面。接受chirality(手性)的复杂性不仅丰富了我们对自然世界的理解,也为可能改变我们生活的进步铺平了道路。