polaron
简明释义
n. [物][遗] 极化子
英英释义
单词用法
小极化子 | |
大极化子 | |
极化子效应 | |
极化子形成 | |
极化子传输 | |
极化子导电 |
同义词
反义词
例句
1.The polaron effects on excitons in a parabolic quantum well are studied.
研究了抛物阱中极化子效应对激子的影响。
2.The polaron ground state in asymmetric double heterostructure (ADHS) is studied.
研究了半导体非对称双异质结(ADHS)中,极化子的基态性质。
3.The influences of the electronic velocity on the mean number of phonons of the strong-and weak-coupling polaron in a semiconductor quantum dot are derived.
导出了电子速度对半导体量子点中强、弱耦合极化子的声子平均数的影响。
4.We have studied the energy spectra of bi-polaron and the localized modes around a bi-polaron in cis - (ch), by using a self-consistent approach.
用自洽迭代的方法研究了顺式聚乙炔中双极化子的能谱及其附近的局域振动模。
5.The thesis concerns mainly about the ground state energy of weak coupling polaron in a parabolic quantum dot.
抛物量子点内弱耦合极化子的基态能量是本文的主要内容。
6.The properties of the strong - and weak-coupling bound optical polaron in a Coulomb field were studied.
研究库仑场中强、弱耦合束缚极化子的性质。
7.This essay will mainly discuss polaron dynamic processes in the presence of external electric fields.
本文用非绝热动力学方法重点讨论了电场力作用下极化子的形成及输运过程。
8.In this paper, the properties of the mean number of optical phonons of the polaron in a polyatomic crystals are studied.
研究多原子晶体中极化子光学声子平均数的性质。
9.The properties of the effective mass of polaron in semiconductor quantum dot are studied.
研究了半导体量子点中极化子的有效质量。
10.The interaction between phonons and electrons leads to the formation of a polaron 极化子 in ionic crystals.
声子与电子之间的相互作用导致了在离子晶体中形成 polaron 极化子。
11.Researchers are studying how polarons 极化子 form in organic semiconductors to improve device efficiency.
研究人员正在研究如何在有机半导体中形成 polarons 极化子 以提高设备效率。
12.In solid-state physics, a polaron 极化子 is a quasiparticle that represents an electron coupled with lattice distortions.
在固态物理中,polaron 极化子 是一种准粒子,代表与晶格畸变耦合的电子。
13.The behavior of a polaron 极化子 can significantly affect the electrical conductivity of a material.
一个 polaron 极化子 的行为可以显著影响材料的电导率。
14.A strong coupling between the electron and the lattice can result in a large polaron 极化子 mass.
电子与晶格之间的强耦合可能导致大的 polaron 极化子 质量。
作文
In the realm of condensed matter physics, the concept of a polaron (极化子) plays a crucial role in understanding the behavior of electrons in various materials. A polaron is essentially an electron that is coupled with a lattice distortion in a solid. This phenomenon occurs due to the interaction between the electron and the surrounding atoms, leading to a shift in the positions of these atoms. As a result, the electron becomes 'dressed' by the lattice vibrations, which significantly alters its effective mass and mobility. The study of polarons has profound implications for the development of new materials, especially in the field of semiconductors. For instance, when designing materials for electronic devices, it is essential to consider how polarons influence charge transport. In certain materials, the presence of polarons can enhance conductivity, while in others, it may hinder it. This dual nature of polarons makes them a fascinating subject of research. Moreover, there are two main types of polarons: small and large. Small polarons are typically found in materials with strong electron-phonon interactions, where the distortion of the lattice is localized around the electron. On the other hand, large polarons occur in materials with weaker interactions, resulting in a more extended lattice distortion. Understanding these distinctions is vital for physicists and material scientists as they seek to manipulate the properties of materials for specific applications. Recent advancements in technology have allowed researchers to experimentally observe polarons and their effects on material properties. Techniques such as spectroscopy and microscopy have provided insights into how polarons form and interact within different materials. These observations have confirmed theoretical models and have led to a deeper understanding of the fundamental processes governing electron behavior in solids. Furthermore, the implications of polarons extend beyond traditional semiconductors. In the realm of high-temperature superconductors, the role of polarons is still being investigated. Some theories suggest that polarons may play a significant role in the mechanism of superconductivity, contributing to the complex interplay of electrons and lattice dynamics. In conclusion, the study of polarons is pivotal in advancing our understanding of material science and condensed matter physics. As researchers continue to explore the intricate relationship between electrons and lattice structures, the potential applications of polarons in developing new technologies remain vast. From enhancing the efficiency of electronic devices to uncovering the mysteries of superconductivity, polarons are at the forefront of modern scientific inquiry, bridging the gap between theory and practical application. Their unique properties not only challenge our existing knowledge but also inspire innovative solutions to contemporary challenges in materials science.
在凝聚态物理学领域,极化子的概念在理解各种材料中电子的行为方面发挥着至关重要的作用。极化子本质上是与固体中的晶格畸变耦合的电子。这种现象是由于电子与周围原子之间的相互作用而发生的,导致这些原子的位置发生偏移。因此,电子被晶格振动“包裹”,这显著改变了其有效质量和迁移率。对极化子的研究对新材料的发展具有深远的影响,特别是在半导体领域。例如,在设计电子设备材料时,必须考虑极化子如何影响电荷输运。在某些材料中,极化子的存在可以增强导电性,而在其他材料中,它可能会阻碍导电性。这种极化子的双重性质使其成为一个引人入胜的研究课题。此外,极化子主要有两种类型:小极化子和大极化子。小极化子通常出现在具有强电子-声子相互作用的材料中,其中晶格的畸变局限于电子周围。另一方面,大极化子发生在相互作用较弱的材料中,导致更广泛的晶格畸变。理解这些区别对于物理学家和材料科学家来说至关重要,因为他们寻求操纵材料的特性以满足特定应用。近年来,技术的进步使研究人员能够实验性地观察到极化子及其对材料特性的影响。光谱学和显微镜等技术提供了关于极化子如何在不同材料中形成和相互作用的见解。这些观察证实了理论模型,并加深了我们对固体中电子行为基本过程的理解。此外,极化子的影响超出了传统半导体的范围。在高温超导体领域,极化子的作用仍在研究中。一些理论表明,极化子可能在超导机制中发挥重要作用,促进电子与晶格动力学之间复杂的相互作用。总之,对极化子的研究对于推进我们对材料科学和凝聚态物理学的理解至关重要。随着研究人员继续探索电子与晶格结构之间错综复杂的关系,极化子在开发新技术方面的潜在应用仍然广阔。从提高电子设备的效率到揭示超导现象的奥秘,极化子处于现代科学探究的最前沿,架起理论与实际应用之间的桥梁。它们独特的特性不仅挑战了我们现有的知识,还激发了对当代材料科学挑战的创新解决方案。