brownian movement

简明释义

布朗运动

英英释义

Brownian movement refers to the random, erratic motion of microscopic particles suspended in a fluid (liquid or gas) resulting from their collision with fast-moving molecules in the medium.

布朗运动是指微观粒子在液体或气体中悬浮时,由于与快速移动的分子发生碰撞而导致的随机、无规则的运动。

例句

1.In physics, brownian movement 布朗运动 helps explain diffusion processes.

在物理学中,brownian movement 布朗运动有助于解释扩散过程。

2.The irregular paths taken by small particles due to brownian movement 布朗运动 can be modeled mathematically.

由于brownian movement 布朗运动而导致的小颗粒的不规则路径可以通过数学建模。

3.Scientists study brownian movement 布朗运动 to understand the behavior of particles in fluids.

科学家研究brownian movement 布朗运动以理解流体中颗粒的行为。

4.The phenomenon of brownian movement 布朗运动 was first observed by Robert Brown in 1827.

brownian movement 布朗运动现象最早由罗伯特·布朗于1827年观察到。

5.The random motion of pollen grains in water is a classic example of brownian movement 布朗运动.

水中花粉颗粒的随机运动是一个经典的brownian movement 布朗运动示例。

作文

The concept of brownian movement is a fundamental principle in the field of physics and chemistry, describing the random motion of particles suspended in a fluid. This phenomenon was first observed by the botanist Robert Brown in 1827 when he noticed that pollen grains in water moved in an erratic manner. The significance of brownian movement extends beyond simple observation; it provides critical insights into the nature of matter and the interactions at the microscopic level.To understand brownian movement, one must consider the environment in which it occurs. When tiny particles, such as pollen or dust, are placed in a liquid or gas, they are bombarded by the molecules of the surrounding medium. These molecules are in constant motion due to thermal energy, and their collisions with the larger particles result in a zigzagging path. This chaotic movement is not only fascinating but also serves as evidence for the kinetic theory of matter, which posits that particles are always in motion.The implications of brownian movement are profound. For example, this phenomenon helps explain why substances mix and react at the molecular level. In solutions, the random motion of solute particles leads to diffusion, where particles spread out from areas of high concentration to low concentration until equilibrium is reached. This process is essential in various biological systems, such as the transport of nutrients across cell membranes.Moreover, brownian movement has practical applications in technology and industry. Understanding this random motion is crucial in fields like nanotechnology, where scientists manipulate particles at the nanoscale. By controlling the conditions that influence brownian movement, researchers can design more efficient drug delivery systems or create materials with specific properties.In addition to its scientific significance, brownian movement also captures the imagination due to its randomness. It reminds us that while we strive for order and predictability in our lives, the natural world is often governed by chaos. This duality of order and disorder is a theme reflected in many aspects of life, from the unpredictability of weather patterns to the behavior of financial markets.In conclusion, brownian movement is more than just a scientific curiosity; it is a window into the intricate workings of the universe. Its discovery has paved the way for advancements in multiple disciplines, illustrating the interconnectedness of science and everyday life. As we continue to explore the mysteries of the microscopic world, the concept of brownian movement will undoubtedly remain a cornerstone of our understanding of the physical universe.

布朗运动是物理学和化学领域的一个基本原则,描述了悬浮在流体中的粒子的随机运动。这一现象最早是由植物学家罗伯特·布朗于1827年首次观察到的,他注意到水中的花粉颗粒以一种不规则的方式移动。布朗运动的重要性超越了简单的观察;它为我们提供了对物质性质和微观层面相互作用的关键洞察。要理解布朗运动,必须考虑其发生的环境。当微小的粒子,如花粉或尘埃,置于液体或气体中时,它们会受到周围介质分子的撞击。这些分子由于热能而处于不断运动状态,与较大粒子的碰撞导致了锯齿状的路径。这种混乱的运动不仅令人着迷,而且也证明了物质的动理论,该理论认为粒子总是处于运动状态。布朗运动的影响深远。例如,这一现象有助于解释为什么物质在分子水平上混合和反应。在溶液中,溶质粒子的随机运动导致扩散,即粒子从高浓度区域向低浓度区域扩散,直到达到平衡。这个过程在各种生物系统中至关重要,例如营养物质通过细胞膜的运输。此外,布朗运动在技术和工业中也有实际应用。了解这种随机运动对于纳米技术等领域至关重要,科学家在纳米尺度上操控粒子。通过控制影响布朗运动的条件,研究人员可以设计更有效的药物传递系统或创造具有特定性质的材料。除了科学意义,布朗运动由于其随机性也引人入胜。它提醒我们,尽管我们努力追求生活中的秩序和可预测性,自然界往往是由混沌支配的。这种秩序与无序的二元性是许多生活方面的主题,从天气模式的不确定性到金融市场的行为。总之,布朗运动不仅仅是一个科学好奇心;它是透视宇宙复杂运作的窗口。它的发现为多个学科的进步铺平了道路,说明了科学与日常生活之间的相互联系。随着我们继续探索微观世界的奥秘,布朗运动的概念无疑将继续成为我们理解物理宇宙的基石。